Baccalauréat S Centres étrangers 12 juin 2014 - Spécialité
Page 9 sur 11
Spécialité 5 points
Partie A : préliminaires
- Soient $n$ et $N$ deux entiers naturels supérieurs ou égaux à 2, tels que : \[n^2 \equiv N -1\quad \text{modulo}\: N.\] Montrer que : $n \times n^3 \equiv 1 \quad \text{modulo}\:\: N$.
- Déduire de la question précédente un entier $k_{1}$ tel que: $5k_{1} \equiv 1\quad \text{modulo}\:\: 26$. On admettra que l'unique entier $k$ tel que : $ 0 \leqslant k \leqslant 25$ et $5k \equiv 1 \quad \text{modulo}\:\: 26$ vaut 21.
- On donne les matrices : $A = \begin{pmatrix}4&1\\3&2\end{pmatrix},\: B = \begin{pmatrix}2&- 1\\- 3&4\end{pmatrix},\: X = \begin{pmatrix}x_{1}\\x_{2}\end{pmatrix}$ et $Y = \begin{pmatrix}y_{1}\\y_{2}\end{pmatrix}$.
- Calculer la matrice $6A - A^2$.
- En déduire que $A$ est inversible et que sa matrice inverse, notée $A^{- 1}$, peut s'écrire sous la forme $A^{-1} = \alpha I + \beta A$, ou $\alpha$ et $\beta$ sont deux réels que l'on déterminera.
- Vérifier que : $B = 5A^{-1}$.
- Démontrer que si $A X = Y$, alors $5X = B Y$.
Partie B : procédure de codage
Coder le mot « ET » , en utilisant la procédure de codage décrite ci-dessous.
- Le mot à coder est remplacé par la matrice $X = \begin{pmatrix}x_{1}\\x_{2}\end{pmatrix}$, où $x_{1}$ est l'entier représentant la première lettre du mot et $x_{2}$ l'entier représentant la deuxième, selon le tableau de correspondance ci-dessous : $$\begin{array}{}\hline A&B&C&D&E&F&G&H&I&J&K&L&M\\ \hline 0&1&2&3&4&5&6&7&8&9&10&11&12\\ \hline \hline N&O&P&Q&R&S&T&U&V&W&X&Y&Z\\ \hline 13&14&15&16&17&18&19&20&21&22&23&24&25\\ \hline \end{array}$$
- La matrice $X$ est transformée en la matrice $Y = \begin{pmatrix}y_{1}\\ y_{2} \end{pmatrix}$ telle que : $Y = AX$.
- La matrice $Y$ est transformée en la matrice $R = \begin{pmatrix}r_{1}\\r_{2}\end{pmatrix}$, où $r_{1}$ est le reste de la division euclidienne de $y_{1}$ par 26 et $r_{2}$ le reste de la division euclidienne de $y_{2}$ par 26.
- Les entiers $r_{1}$ et $r_{2}$ donnent les lettres du mot codé, selon le tableau de correspondance ci-dessus.
Exemple : « OU » (mot à coder) $\to X \begin{pmatrix}14\\20\end{pmatrix} \to Y = \begin{pmatrix}76\\82\end{pmatrix} \to R = \begin{pmatrix}24\\4 \end{pmatrix} \to $ « YE » (mot codé).
Partie C : procédure de décodage
(on conserve les mêmes notations que pour le codage) Lors du codage, la matrice $X$ a été transformée en la matrice $Y = \begin{pmatrix}y_{1}\\y_{2}\end{pmatrix}$ telle que : $Y = A X$.
- Démontrer que : $\left\{\begin{array}{l c l} 5x_{1} &=& \phantom{-}2y_{1} - y_{2}\\ 5x_{2} &=&- 3y_{1} + 4y_{2} \end{array}\right..$
- En utilisant la question 1. b. de la \textbf{partie A}, établir que: \[\left\{\begin{array}{l c l} x_{1}&\equiv&16y_{1} + 5y_{2}\\ x_{2}&\equiv&15y_{1} + 6y_{2} \end{array}\right. \quad \text{modulo}\:\: 26\]
- Décoder le mot « QP » .
- Vues: 38192