Baccalauréat S Amérique du Sud 21 novembre 2017 - Exercice 5

Page 9 sur 12: Exercice 5

Exercice 5 (5 points)


Candidats N'AYANT PAS SUIVI l'enseignement de spécialité mathématiques


Un biologiste souhaite étudier l'évolution de la population d'une espèce animale dans une réserve. Cette population est estimée à 12000 individus en 2016. Les contraintes du milieu naturel font que la population ne peut pas dépasser les 60000 individus.

Partie A : un premier modèle


Dans une première approche, le biologiste estime que la population croît de 5 % par an. L'évolution annuelle de la population est ainsi modélisée par une suite $\left(v_n\right)$ où $v_n$ représente le nombre d'individus, exprimé en milliers, en $2016 + n$. On a donc $v_0 = 12$.

  1. Déterminer la nature de la suite $\left(v_n\right)$ et donner l'expression de $v_n$ en fonction de $n$.
  2. Ce modèle répond-il aux contraintes du milieu naturel ?

 

Partie B : un second modèle


Le biologiste modélise ensuite l'évolution annuelle de la population par une suite $\left(u_n\right)$ définie par $u_0 = 12$ et, pour tout entier naturel $n$, $u_{n+1} = - \dfrac{1,1}{605} u_n^2 + 1,1 u_n$.

  1. On considère la fonction $g$ définie sur $\mathbb{R}$ par \[g(x) = - \dfrac{1,1}{605}x^2 + 1,1 x.\]
    1. Justifier que $g$ est croissante sur [0~;~60].
    2. Résoudre dans $\mathbb{R}$ l'équation $g(x) = x$.
  2. On remarquera que $u_{n+1} = g\left(u_n\right)$.
    1. Calculer la valeur arrondie à $10^{-3}$ de $u_1$. Interpréter.
    2. Démontrer par récurrence que, pour tout entier naturel $n$, $0 \leqslant u_n \leqslant 55$.
    3. Démontrer que la suite $\left(u_n\right)$ est croissante.
    4. En déduire la convergence de la suite $\left(u_n\right)$.
    5. On admet que la limite $\ell$ de la suite $\left(u_n\right)$ vérifie $g(\ell) = \ell$. En déduire sa valeur et l'interpréter dans le contexte de l'exercice.
  3. Le biologiste souhaite déterminer le nombre d'années au bout duquel la population dépassera les 50000 individus avec ce second modèle. Il utilise l'algorithme suivant. $$ \begin{array}{ |l|l|}\hline \text{Variables } & n \text{ un entier naturel}\\ &u \text{ un nombre réel}\\ \hline \text{Traitement} &n \text{ prend la valeur }0 \\ & u \text{ prend la valeur } 12\\ &\text{Tant Que} \cdots\\ &\hspace{1.5cm} u \text{ prend la valeur } \cdots\\ &\hspace{1.5cm} n \text{ prend la valeur } \cdots\\ &\text{Fin Tant Que}\\ \hline \text{ Sortie } &\text{Afficher} \cdots\\ \hline \end{array} $$ Recopier et compléter cet algorithme afin qu'il affiche en sortie le plus petit entier $r$ tel que $u_r \geqslant 50$.
Correction Exercice 5
Page
  • Vues: 50266

Rechercher