Baccalauréat S Amérique du Sud 21 novembre 2017 - Exercice 4

Page 7 sur 12: Exercice 4

Exercice 4 3 points


Commun à tous les candidats


Dans le plan complexe muni d'un repère orthonormé direct $\left(\text{O},~\vec{u},~\vec{v}\right)$, on considère les points A et B d'affixes respectives $z_{\text{A}} = 2\text{e}^{\text{i}\frac{\pi}{4}}$ et $z_{\text{B}} = 2\text{e}^{\text{i}\frac{3\pi}{4}}$

  1. Montrer que OAB est un triangle rectangle isocèle.
  2. On considère l'équation \[(E) \::\: z^2 - \sqrt{6}\,z + 2 = 0.\] Montrer qu'une des solutions de $(E)$ est l'affixe d'un point situé sur le cercle circonscrit au triangle OAB.

 

Correction Exercice 4
Page
  • Vues: 35448

Rechercher