Baccalauréat STI2D et STL spécialité SPCL Polynésie 14 juin 2017 - Exercice 4

Page 7 sur 8: Exercice 4

Exercice 4 6 points


Suites

Dans un parc régional, on étudie une espèce de renards. Cette population était de 1240 renards à la fin de l'année 2016. On modélise par $u_n$ le nombre de renards dans le parc régional à la fin de l'année $2016 + n$. On a donc $u_0 = 1240$.
On estime à 15% par an la baisse du nombre $u_n$. On suppose que cette évolution restera identique pour les années à venir.
Dans cet exercice, les résultats seront arrondis à l'unité.

Partie A

 

  1. Montrer qu'à la fin de l'année 2017 ,la population de renards sera de 1054 .
    1. Donner la valeur de $u_1$ puis calculer $u_2$.
    2. Exprimer $u_{n+1}$ en fonction de $u_n$.
    3. En déduire la nature de la suite $\left(u_n\right)$ et préciser ses éléments caractéristiques.
  2. Déterminer une estimation du nombre de renards présents dans le parc régional à la fin de l'année 2020.
  3. Déterminer la limite de la suite $\left(u_n\right)$. Comment interpréter ce résultat ?
  4. Des scientifiques considèrent que l'espèce des renards présents dans le parc sera en situation d'extinction à partir du moment où le nombre de renards deviendra strictement inférieur à 100. À partir de quelle année l'espèce de renards présents dans le parc sera-t-elle en situation d'extinction ?

 

Partie B


Afin de préserver l'espèce, on décide d'introduire à chaque année 30 renards à partir de la fin de l'année 2017. On note $v_n$ le nombre de renards présents dans le parc à la fin de l'année $2016 + n$. On estime à 15% par an la baisse du nombre $v_n$. On a $v_0= 1240 $.

  1. Calculer $v_1$.
  2. Dans cette question, toute trace de réponse cohérente sera prise en compte.
    On admet que pour tout entier naturel $n$ on a $v_n = 200 + 1040 \times 0,85^n$. Que pensez-vous de l'affirmation suivante : « Le nombre de renards va diminuer et se stabiliser vers 200 ».

 

Correction Exercice 4
Page
  • Vues: 12666

Rechercher