Baccalauréat S Centres étrangers 13 juin 2017 - Exercice 3

Page 5 sur 10: Exercice 3

Exercice 3 6 points


Fonction exponentielle, calcul intégral et suites


La pharmacocinétique étudie l'évolution d'un médicament après son administration dans l'organisme, en mesurant sa concentration plasmatique, c'est-dire sa concentration dans le plasma. On étudie dans cet exercice l'évolution de la concentration plasmatique chez un patient d'une même dose de médicament, en envisageant différents modes d’administration.

Partie A : administration par voie intraveineuse


On note $f(t)$ la concentration plasmatique, exprimée en microgramme par litre ($\mu$g.L$^{-1}$), du médicament, au bout de $t$ heures après administration par voie intraveineuse. Le modèle mathématique est : $f(t) = 20\mathrm{e}^{-0,1t}$, avec $ t \in [0~;~ +\infty[$. La concentration plasmatique initiale du médicament est donc $f(0) = 20\: \mu$g.L$^{-1}$.

  1. La demi-vie du médicament est la durée (en heure) après laquelle la concentration plasmatique du médicament est égale à la moitié de la concentration initiale. Déterminer cette demi-vie, notée $t_{0,5}$.
  2. On estime que le médicament est éliminé dès que la concentration plasmatique est inférieure à $0,2 \mu$g.L$^{-1}$. Déterminer le temps à partir duquel le médicament est éliminé. On donnera le résultat arrondi au dixième.
  3. En pharmacocinétique, on appelle ASC (ou « aire sous la courbe »), en $\mu$g.L$^{-1}$, le nombre $\lim\limits_{x\rightarrow +\infty}\int_0^x f(t)\:\text{d}t$. Vérifier que pour ce modèle, l' ASC est égal à $200\: \mu$g.L$^{-1}$.

 

Partie B : administration par voie orale


On note $g(t)$ la concentration plasmatique du médicament, exprimée en microgramme par litre (µg.L$^{-1}$), au bout de $t$ heures après ingestion par voie orale. Le modèle mathématique est : $g(t) = 20 \left(\mathrm{e}^{- 0,1t} - \mathrm{e}^{-t}\right)$ , avec $t \in [0~;~+ \infty[ $. Dans ce cas, l'effet du médicament est retardé, puisque la concentration plasmatique initiale est égale à: $g(0) = 0~\mu$g.L$^{-1}$.

  1. Démontrer que, pour tout $t$ de l'intervalle $[0~;~+ \infty[$, on a : $g'(t) = 20\text{e}^{-t}\left(1 - 0,1\text{e}^{0,9t} \right)$.
  2. Étudier les variations de la fonction $g$ sur l'intervalle $[0~;~+ \infty[$. (On ne demande pas la limite en $+\infty$.) En déduire la durée après laquelle la concentration plasmatique du médicament est maximale. On donnera le résultat à la minute près.

 

Partie C : administration répétée par voie intraveineuse


On décide d'injecter à intervalles de temps réguliers la même dose de médicament par voie intraveineuse. L'intervalle de temps (en heure) entre deux injections est choisi égal à la demi-vie du médicament, c'est-à-dire au nombre $t_{0,5}$ qui a été calculé en A - 1. Chaque nouvelle injection entraîne une hausse de la concentration plasmatique de $20 \mu$g.L$^{-1}$. On note $u_n$ la concentration plasmatique du médicament immédiatement après la $n$-ième injection. Ainsi, $u_1 = 20$ et, pour tout entier $n$ supérieur ou égal à 1, on a : $u_{n+1} = 0,5 u_n + 20$. On remarque qu'avec ce modèle, la concentration initiale du médicament après la première injection, soit $20 \mu$g.L$^{-1}$, est analogue à celle donnée par le modèle de la partie A, soit $f(0)$.

  1. Démontrer par récurrence que, pour tout entier $n \geqslant 1$ : $u_n = 40 - 40 \times 0,5^n$.
  2. Déterminer la limite de la suite $\left(u_n\right)$ lorsque $n$ tend vers $+ \infty$.
  3. On considère que l'équilibre est atteint dès que la concentration plasmatique dépasse 38 $\mu$g.L-$^{-1}$. Déterminer le nombre minimal d'injections nécessaires pour atteindre cet équilibre.
Correction Exercice 3
Page
  • Vues: 14560

Rechercher