Métropole—La Réunion STI2D & STL 6 septembre 2018 - Correction Exercice 2
Correction de l'exercice 2 (6 points)
Le benzène est un produit chimique liquide utilisé dans la fabrication de matières plastiques.
À la suite d'un incident le 10 juin 2018, une certaine quantité de benzène a été rejetée dans une rivière qui alimente en partie un bassin servant de base nautique. Les autorités sanitaires doivent s'occuper de la dépollution de la rivière tandis que le responsable de la base nautique s'occupe de celle du bassin. Le benzène flotte à la surface de l'eau. Le responsable de la base nautique prélève un échantillon de liquide selon un protocole établi. Il détermine ainsi la concentration de benzène à la surface du bassin. Celle observée le 10 juin 2018 est de $68$ microgrammes par litre. Le tableau suivant classe la qualité de l'eau selon la concentration de benzène, exprimée en microgrammes par litre ($\mu$g/L), dans un échantillon prélevé à la surface de l'eau. $$\begin{array}{|c|c|c|c|c|c|}\hline \text{ Concentration de benzène en }\mu g/L&[0~;~0,5[ &[0,5~;~5[ &[5~;~50[ &[50~;~5000[& \geqslant 5000 \\ \hline \text{Qualité de l'eau }&\text{Excellente} &\text{Bonne} &\text{Moyenne }&\text{Médiocre} &\text{Mauvaise}\\ \hline \end{array} $$ La toxicité du benzène par inhalation conduit le responsable à fermer la base nautique afin de préserver la santé des usagers, cette décision entraînant une perte de recette de $750$ euros par jour. La base nautique pourra rouvrir lorsque la qualité de l'eau sera devenue excellente. Le responsable décide d'étudier deux solutions pour dépolluer le bassin : la première consiste à laisser le benzène s'éliminer sans intervention extérieure et la seconde consiste à filtrer l'eau au charbon actif.
Partie A
Élimination du benzène de façon naturelle
Dans cette partie, le responsable étudie l'évolution de la concentration de benzène à la surface du bassin sans intervention extérieure. Il estime que cette concentration diminue de manière naturelle de $7 %$ par jour, notamment par évaporation.
-
- Quelle est la qualité de l'eau le 10 juin 2018 ? Le 10 juin 2018 la concentration de benzène est de 68~$\mu$g/L donc la qualité est médiocre.
- Quelle serait la qualité de l'eau le 11 juin 2018 ? Le 11 juin 2018 la concentration aurait baissé de 7 % donc serait de $68-68\times \dfrac{7}{100}= 63,24$; la qualité de l'eau serait toujours médiocre.
- Pour tout entier naturel $n$, on note $u_n$ la concentration de benzène, en microgrammes par litre, à la surface du bassin $n$ jours après le 10 juin 2018.
- Montrer que la suite $\left(u_n\right)$ est une suite géométrique dont on précisera le premier terme et la raison. Chaque jour, la concentration diminue de 7 %; diminuer de 7 %, c'est multiplier par $1-\dfrac{7}{100} = 0,93$.
- Déterminer une expression de $u_n$ en fonction de $n$. La suite $(u_n)$ est géométrique de raison $q=0,93$ et de premier terme $u_0=68$ donc,
- Vérifier que le 15 juin 2018, l'eau deviendrait de qualité moyenne. Le 15 juin 2018 correspond à $n=5$: $u_5 = 68\times 0,93^5 \approx 47,3$.
- Quelle est la limite de la suite $\left(u_n\right)$ ? Interpréter le résultat dans le contexte de l'exercice. La suite $(u_n)$ est géométrique de raison $0,93$. Or $0< 0,93 < 1$ donc la suite $(u_n)$ a pour limite 0. Cela signifie qu'au bout d'un certain temps, la concentration en benzène va tendre vers 0 donc que la qualité de l'eau va devenir excellente.
Donc la suite $(u_n)$ est géométrique de raison $q=0,93$.
Le 10 juin 2018 la concentration est de 68~$\mu$g/L donc le premier terme de la suite est $u_0=68$.
pour tout entier naturel $n$, $u_n=u_0 \times q^n = 68 \times 0,93^n$.
Or $47,3 \in [5\,; 50[$ donc le 15 juin 2018 la qualité de l'eau est moyenne. -
- On propose ci-dessous la partie traitement de deux algorithmes. $$ \begin{array}{ |l|l|l|} \hline u \gets 68 && u \gets 68 \\ n \gets 0 && n \gets 0 \\ \text{ Tant que }u \geqslant 0,5 &&\text{Tant que }u < 0,5 \\ u \gets 0,93u && u \gets 0,93u \\ n \gets n+1 && n \gets n+1 \\ \text{Fin Tant que}&&\text{Fin Tant que}\\ \hline\end{array} $$ Dans l'algorithme 2 la condition pour entrer dans la boucle est « $<0,5$»; or la variable $u$ est initialisée à 68 donc on n'entre jamais dans la boucle et l'algorithme 2 affiche la valeur 0 pour $n$. C'est donc l'algorithme 1 qui permet de déterminer le nombre de jours de fermeture avant que la qualité de l'eau soit devenue excellente.
- Déterminer le plus petit entier naturel $n$ vérifiant l'inéquation $68 \times 0,93^n < 0,5$. Indiquer la démarche utilisée. On résout l'inéquation $68 \times 0,93^n < 0,5$: $$\begin{array}{rll} 68 \times 0,93^n < 0,5 &\iff 0,93^n< \dfrac{0,5}{68}&\\ &\iff \ln\left (0,93^n\right ) <\ln \left ( \dfrac{0,5}{68}\right )& \ln \text{est strictement croissante sur } ]0;+\infty[\\ & \iff n\ln\left (0,93 \right ) <\ln \left ( \dfrac{0,5}{68}\right )& \text{ car } \ln\left (a^n \right )=n\ln a\\ &\iff n> \dfrac{\ln \left ( \dfrac{0,5}{68}\right )}{\ln\left (0,93 \right )}&\text{ car } 0,93 <1 \text{ donc } \ln\left (0,93 \right ) <0\\ \end{array}$$ Grâce à une calculatrice, on obtient $\dfrac{\ln \left ( \dfrac{0,5}{68}\right )}{\ln\left (0,93 \right )}\approx 67,7$.
- Interpréter le résultat précédent. Donc c'est à partir du $68 $ ième jour après le 10 juin 2018 que la qualité de l'eau sera redevenue excellente.
- En déduire la perte financière qui résulterait de la fermeture de la base si cette solution était retenue. Si cette solution était retenue, la base serait fermée 67 jours donc la perte financière serait, en euros, de $68 \times 750 = 51000$.
Donc le plus petit entier $n$ tel que la concentration soit inférieure à $0,5$ $\mu$g/L est 68.
Partie B
Élimination du benzène par traitement au charbon actif
Un procédé de filtration de l'eau de la base nautique au charbon actif permettrait d'éliminer plus rapidement le benzène présent à la surface du bassin. Le coût total de l'installation est de 20000 euros. Dans cette partie, le responsable étudie cette solution. L'action du filtre commencerait alors le 13 juin 2018. À la mise en service, à l'instant $t = 0$, le responsable estime que la concentration de benzène à la surface du bassin serait de $54,7$ microgrammes par litre. Il choisit de modéliser la concentration de benzène en microgrammes par litre à la surface du bassin, en fonction du temps $t$ exprimé en jours, par une fonction $f$, définie sur $[0~; ~+ \infty[$ et vérifiant l'équation différentielle : \[(E)\qquad y' + \dfrac{1}{4}y = 0\]
- Résoudre dans l'intervalle $[0~; ~+ \infty[$ l'équation différentielle $(E)$. L'équation différentielle $y' + \dfrac{1}{4}y = 0$ est de la forme $y'=ay$ où $a=- \dfrac{1}{4}y$ qui a pour solutions $y=K\text{e}^{at}$ où $K$ est un réel quelconque.
- Justifier que, pour tout $t \geqslant 0$, $f(t) = 54,7\text{e}^{-0,25t}$. En $t=0$, la concentration du bassin est de $54,7$ $\mu$g/L donc $f(0)= 54,7$ ce qui équivaut à $K\text{e}^{0} = 54,7$ ce qui donne $K=54,7$. Donc pour tout $t \geqslant 0$,\: $f(t) = 54,7\text{e}^{-0,25t}$.
- Quelle serait la qualité de l'eau $19$ jours après la mise en service du filtre ? La concentration de benzène dans l'eau $19$ jours après la mise en service du filtre est $f(19) = 54,7 \text{e}^{-0,25\times 19} \approx 0,47$.
Donc $(E)$ a pour solutions les fonctions $f$ définies par $f(t)=K\text{e}^{-0,25t}$ où $K$ est un réel quelconque.
Cela veut dire que 19 jours après la mise en service du filtre, la qualité de l'eau est redevenue excellente.
Partie C
Comparaison des deux solutions étudiées
Laquelle des deux solutions envisagées est financièrement la plus judicieuse pour la base nautique ?
$f(18) \approx 0,61$ donc au bout de 18 jours après la mise en service du filtre, l'eau n'est pas de qualité excellente. Elle devient excellente après 19 jours à compter du 13 juin, donc après 22 jours à compter du 10 juin, jour de la pollution 22 jours de fermeture coûtent $22\times 750 = 16500 $ € le coût total de la solution avec filtre est donc $20000 + 16500 = 36500 $ €
La solution avec utilisation d'un filtre à charbon est nettement plus judicieuse que l'autre.
- Vues: 12963