Baccalauréat S Asie 23 juin 2016 - Spécialité

Page 9 sur 10: Spécialité

Spécialité 5 points


Candidats AYANT SUIVI l'enseignement de spécialité mathématiques

Cette matrice est connue seulement de l'émetteur et du destinataire.
Les deux parties de cet exercice sont indépendantes

Partie A : quelques résultats

 

  1. On considère l'équation $(E) : \: 9d - 26m = 1$, où $d$ et $m$ désignent deux entiers relatifs.
    1. Donner une solution simple de cette équation, de sorte que $d$ et $m$ soient des nombres entiers compris entre $0$ et $3$.
    2. Démontrer que le couple $(d,\: m)$ est solution de l'équation $(E)$ si et seulement si : \[9 (d - 3) = 26 ( m - 1).\]
    3. En déduire que les solutions de l'équation $(E)$ sont les nombres entiers relatifs de la forme : \[\left\{\begin{array}{l c l} d &=&26k+3\\ m&=&9k+1 \end{array}\right. ,\:\quad \text{avec }\:k \in \mathbb Z.\]
    1. Soit $n$ un nombre entier. Démontrer que si $n = 26 k - 1$, avec $k$ entier relatif, alors $n$ et $26$ sont premiers entre eux.
    2. En déduire que les nombres $9d - 28$, avec $d = 26k + 3$ et $k \in \mathbb Z$, sont premiers avec $26$.

 

Partie B : cryptage et décryptage


On considère la matrice $A = \begin{pmatrix}9&4\\7&3\end{pmatrix}$. On utilisera le tableau suivant pour la correspondance entre les lettres et les nombres. $$ \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}\hline A&B&C&D&E&F&G&H&I&J&K&L&M\\ \hline 0&1&2&3&4&5&6&7&8&9&10&11&12\\ \hline\hline N&O&P& Q& R& S& T& U& V& W& X&Y& Z\\ \hline 13&14& 15& 16& 17& 18& 19& 20& 21& 22& 23& 24 & 25\\ \hline \end{array} $$

Méthode de cryptage (pour un mot comportant un nombre pair de lettres) Exemple : avec le mot MATH
1 . On regroupe les lettres par paires. $\text{MA }\quad \text{TH}$
2.On remplace les lettres par les valeurs associées à l'aide du tableau précédent, et on place les couples de nombres obtenus dans des matrices colonne. $C_1 = \begin{pmatrix}12\\0\end{pmatrix}$ $C_2 = \begin{pmatrix}19\\7\end{pmatrix}$
3.On multiplie les matrices colonne par la gauche par la matrice $A = \begin{pmatrix}9&4\\7&3\end{pmatrix}$ $AC_1 = \begin{pmatrix} 108\\84\end{pmatrix}$ $AC_2 = \begin{pmatrix} 199\\ 154\end{pmatrix}$
4.On remplace chaque coefficient des matrices colonne obtenues par leur reste dans la division euclidienne par 26. $108 = 4\times 26 + 4$ $84= 3 \times 26 + 6$
On obtient : $\begin{pmatrix} 4\\6\end{pmatrix}$ et $\begin{pmatrix} 17\\24\end{pmatrix}$
5. On utilise le tableau de correspondance entre lettres et nombres pour obtenir le mot crypté. EGRY
  1. En cryptant par cette méthode le mot « PION », on obtient « LZWH ». En détaillant les étapes pour les lettres « ES », crypter le mot « ESPION ».
  2. Méthode de décryptage


    Notation :

    lorsqu'on manipule des matrices de nombres entiers relatifs, on peut utiliser la notation » $\equiv$ « pour parler de congruence coefficient par coefficient. Par exemple, on peut écrire : \[\begin{pmatrix}108\\84\end{pmatrix}\equiv\begin{pmatrix}4\\6\end{pmatrix}\: \text{modulo } 26 \text{ car }\:108 \equiv 4 \text{ modulo } 26 \text{ et }\: 84 \equiv 6 \text{ modulo } 26.\] Soient $a$, $b$, $x$, $y$, $x’$ et $y’$ des nombres entiers relatifs. On sait que si $x \equiv x’$ modulo $26$ et $y \equiv y’$ modulo $26$ alors : $ax + by \equiv ax' + by’$ modulo $26$. Ce résultat permet d'écrire que, si $A$ est une matrice $2 \times 2$, et $B$ et $C$ sont deux matrices colonne $2 \times 1$, alors: \[B \equiv C \text{ modulo } 26 \text{ implique } AB \equiv AC \text{ modulo } 26. \]
    1. Établir que la matrice $A$ est inversible, et déterminer son inverse.
    2. Décrypter le mot : XQGY.
Correction Spécialité
Page
  • Vues: 20622

Rechercher