Baccalauréat S Amérique du Nord 28 mai 2019 - Exercice 2

Page 3 sur 10: Exercice 2

Exercice 2 4 points


Commun à tous les candidats


Le plan complexe est muni d'un repère orthonormé direct $\left(\text{O},~\vec{u},~\vec{v}\right)$. Dans ce qui suit, $z$ désigne un nombre complexe.
Pour chacune des affirmations ci-dessous, indiquer sur la copie si elle est vraie ou si elle est fausse. Justifier. Toute réponse non justifiée ne rapporte aucun point.

  1. Affirmation 1 : L'équation $z - \text{i} = \text{i}(z + 1)$ a pour solution $\sqrt{2}\text{e}^{\text{i}\frac{\pi}{4}}$.
  2. Affirmation 2 : Pour tout réel $x \in \left] -\dfrac{\pi}{2}~;~\dfrac{\pi}{2} \right[$, le nombre complexe $1 + \text{e}^{2\text{i} x}$ admet pour forme exponentielle $2 \cos x \text{e}^{-\text{i}x}$.
  3. Affirmation 3 : Un point M d'affixe $z$ tel que $\big|z - \text{i}\big| = \big|z + 1\big|$ appartient à la droite d'équation $y = -x$.
  4. Affirmation 4 : L'équation $z^5 + z - \text{i} + 1 = 0$ admet une solution réelle.
Correction Exercice 2
Page
  • Vues: 45866