Baccalauréat STI2D NOUVELLE CALÉDONIE Mars 2014 2013 - Correction Exercice 4

Page 8 sur 8: Correction Exercice 4

Exercice 4 7 points


Fonctions exponentielles

Dans tout l'exercice, on désigne par $\mathbb R$ l'ensemble des nombres réels.


On donne ci-dessous une petite partie de la courbe représentative $\mathcal{C}$ d'une fonction $f$ définie et dérivable sur $\mathbb R$, dans un repère orthonormé du plan. On note $f'$ la fonction dérivée de $f$. La courbe $\mathcal{C}$ passe par le point $A (0 ; 5)$ et par le point $B$ d'abscisse 2. La tangente $T_A$ à la courbe au point $A$ passe par le point $C(1 ; 1)$ et la tangente $T_B$ au point $B$ est horizontale.


Partie A

Dans ce questionnaire à choix multiples, aucune justification n'est demandée. Pour chacune des questions, une seule des réponses proposées est correcte.
Une bonne réponse rapporte $0,5$ point.
Une mauvaise réponse ou l'absence de réponses n'enlève ni ne rapporte aucun point. On notera sur la copie le numéro de la question et la réponse choisie.


  1. La valeur de $f(0)$ est :
    1. $- 4$
    2. $4$
    3. $1,2$
    4. autre réponse
  2. La courbe $\mathcal{C}$ passe par le point $A(0;5)$ donc $f(0)=5$
  3. La valeur de $f'(0)$ est :
    1. $- 4$
    2. $4$
    3. $1,2$
    4. autre réponse
  4. Le nombre dérivé $f'(0)$ est égal au coefficient directeur de la tangente $T_A$ à la courbe au point $A(0;5)$ or cette tangente passe également par le point $C(1;1)$ d'où $f'(0)=\dfrac{y_C-y_A}{x_C-x_A}$ . Soit $f'(0)=\dfrac{1-5}{1-0}=-4$
  5. La valeur de $f'(2)$ est :
    1. $0$
    2. $2,1$
    3. $3 $
    4. autre réponse
  6. La tangente $T_B$ à la courbe au point $B$ d'abscisse 2 est parallèle à l'axe des abscisses donc $f'(2)=0;$
  7. Un encadrement de $\displaystyle\int_{0}^2 f(x) \, dx$ par des entiers naturels est :
    1. $3 \leqslant \displaystyle\int_{0}^2 f(x) \, dx \leqslant 4$
    2. $5 \leqslant \displaystyle\int_{0}^2 f(x) \, dx \leqslant 7$
    3. $2 \leqslant \displaystyle\int_{0}^2 f(x) \, dx \leqslant 5$
    4. $0 \leqslant \displaystyle\int_{0}^2 f(x) \, dx \leqslant 2$
  8. L'intégrale $\displaystyle\int_{0}^2 f(x) \, d x$ est égale à l'aire, exprimée en unités d'aire, du domaine limité par la courbe $\mathcal{C}$ l'axe des abscisses et les droites d'équations $x=0$ et $x=2$. Or cette aire est visiblement supérieure à 5 unités d'aire. $5 \leqslant \displaystyle\int_{0}^2 f(x) \,d x \leqslant 7$

Partie B

La fonction $f$ représentée dans la PARTIE A est définie sur $\mathbb R$ par $f(x) = \left(- x^2 - 2x + 2\right)e^{- x} + 3$.

  1. On admet que la limite de la fonction $f$ en $+ \infty$ est 3. Déterminer la limite de $f$ en $- \infty$.
  2. Au voisinage de $-\infty$ , une fonction polynôme à la même limite que son monôme de plus haut degré.


    $ \lim\limits_{x \to -\infty}- x^2 - 2x + 2= \lim\limits_{x \to -\infty}- x^2 =-\infty$

    $\left.\begin{array}{l} \lim\limits_{x \to \1}~\2=\3\\ \lim\limits_{x \to \1}~\4=\5 \end{array}\right\}$ par \8 on obtient: $\lim\limits_{x \to \1}~\6=\7$
    $\left.\begin{array}{l} \lim\limits_{x \to -\infty}\left(- x^2 - 2x + 2\right)e^{- x}=-\infty\\ \lim\limits_{x \to -\infty}~3=3 \end{array}\right\}$ par somme on obtient: $\lim\limits_{x \to -\infty}~f(x)= -\infty$
    $\lim\limits_{x \to +\infty}f(x)=-\infty$
  3. On désigne par $f'$ la fonction dérivée de la fonction $f$ et on admet que pour tout nombre réel $x$ appartenant à $\mathbb R$, $f'(x) = \left(x^2 - 4\right)e^{- x}$.
    1. Étudier le signe de $f'(x)$ suivant les valeurs de $x$.
    2. La fonction exponentielle étant strictement positive sur $\mathbb R$, on déduit que pour tout réel $x ; e^{- x}>0$, et ainsi $f'(x)$ a le signe de $x^2-4$ $x^2-4$ est un trinôme du second degré qui a pour racines $-2$ et $2$; il a donc le signe de $a=1$ à l'extérieur des racines et celui de $-a$ à l'intérieur.
    3. En déduire le tableau de variation de la fonction $f$.
  4. On considère la fonction $F$ définie sur $\mathbb R$ par $F(x) = \left(x^2 + 4x + 2\right)e^{- x} + 3x$. Vérifier que la fonction $F$ est une primitive de la fonction $f$ sur $\mathbb R$.
  5. Ici $F(x) = \left(x^2 + 4x + 2\right)e^{- x} + 3x$ est du type $F=u+v$, ainsi $F' =u'+v'$.
    où $u(x)= \left(x^2 + 4x + 2\right)e^{- x} $ , donc $u=ab$ d'où $u'=a'b+b'a$.
    $a(x)= \left(x^2 + 4x + 2\right)$ et $b(x)=e^{- x}$
    Alors $a'(x)= \left(2x+4\right)$ et $b'(x)=-e^{- x}$
    Puis $u'(x)=\left(2x+4\right) e^{- x}+ \left(-e^{- x}\right)\left(x^2 + 4x + 2\right)=e^{- x}\left(2x+4 -x^2 - 4x - 2\right)=e^{- x}\left( -x^2 - 2x+ 2\right)$ et $v'(x)=3$, et donc $F'(x)=u'(x)+v'(x)=e^{- x}\left( -x^2 - 2x+ 2\right)+3=f(x)$
    $F'(x)=f(x)$, et donc la fonction $F$ est une primitive de la fonction $f$ sur $\mathbb R$.
  6. On considère le domaine $\mathcal{D}$ du plan limité par la courbe $\mathcal{C}$ l'axe des abscisses et les droites d'équations $x = 0$ et $x = 2$.
    1. Calculer la valeur exacte de l'aire $\mathcal{A}$, exprimée en unités d'aire, du domaine $\mathcal{D}$.
    2. Sur l'intervalle $[0;2]$ la fonction $f$ est strictement décroissante et $f(2)=3-6 e^{-2} \approx 2,19$ donc $f$ est positive sur l'intervalle $[0;2]$.
      Par conséquent, l'aire $\mathcal{A}$, exprimée en unités d'aire, du domaine $\mathcal{D}$ est égale à l'intégrale de la fonction $f$ sur l'intervalle $[0;2]$ :
      $\displaystyle\int_{0}^2 f(x) \,d x =F(2)-F(0)$.
      $F(2)-F(0)= 14 e^{-2} + 6-2=14 e^{-2} +4$
      $\mathcal{A}=14 e^{-2} +4$ unités d'aire.
    3. Donner une valeur approchée de $\mathcal{A}$ au centième.
    4. $\mathcal{A}\approx 5,89$ unités d'aire.
  7.  

Page
  • Vues: 12104

Rechercher