Baccalauréat S Antilles-Guyane 11 septembre 2013 - Spécialité

Page 9 sur 10: Spécialité

Spécialité 5 points


Candidats AYANT SUIVI l'enseignement de spécialité mathématiques

Partie A
On considère l'algorithme suivant :
$$\begin{array}{|l|}\hline A \text{ et } X \text{sont des nombres entiers }\\ \text{ Saisir un entier positif } A\\ \text{ Affecter à } X \text{ la valeur de } A\\ \text{ Tant que } X \text{ supérieur ou égal à 26}\\ \hspace{1.25cm}\text{ Affecter à } X \text{ la valeur } X - 26\\ \text{ Fin du tant que }\\ \text{ Afficher } X\\ \hline \end{array}$$

  1. Qu'affiche cet algorithme quand on saisit le nombre 3 ?
  2. Qu'affiche cet algorithme quand on saisit le nombre 55 ?
  3. Pour un nombre entier saisi quelconque, que représente le résultat fourni par cet algorithme?


Partie B
On veut coder un bloc de deux lettres selon la procédure suivante (détaillée en quatre étapes) :
Étape 1 : chaque lettre du bloc est remplacée par un entier en utilisant le tableau ci-dessous:
$$\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}\hline A &B &C &D &E &F &G &H &I &J &K &L &M\\\hline 0 &1 &2 &3 &4 &5 &6 &7 &8 &9 &10 &11 &12\\\hline \hline N &O &P &Q &R &S &T &U &V &W &X &Y &Z \\ \hline 13 &14 &15 &16 &17 &18 &19 &20 &21 &22 &23 &24 &25\\\hline \end{array}$$

On obtient une matrice colonne $\begin{pmatrix}x_{1}\\x_{2}\end{pmatrix}$ où $x_{1}$ correspond à la première lettre du mot et $x_{2}$ correspond à la deuxième lettre du mot.

Étape 2 : $\begin{pmatrix}x_{1}\\x_{2}\end{pmatrix}$ est transformé en $\begin{pmatrix}y_{1}\\y_{2}\end{pmatrix}$ tel que
\[\begin{pmatrix}y_{1}\\y_{2}\end{pmatrix} = \begin{pmatrix}3&1\\5&2\end{pmatrix}\begin{pmatrix}x_{1}\\x_{2}\end{pmatrix}\]
La matrice $C = \begin{pmatrix}3&1\\5&2\end{pmatrix}$ est appelée la matrice de codage.

Étape 3 : $\begin{pmatrix}y_{1}\\y_{2}\end{pmatrix}$ est transformé en $\begin{pmatrix}z_{1}\\z_{2}\end{pmatrix}$ tel que \[\left\{\begin{array}{l c l c l c l l} z_{1}& \equiv& y_{1}\: (26)& \text{avec}\:\: 0 &\leqslant& z_{1}&\leqslant& 25\\ z_{2}& \equiv& y_{2}\: (26)& \text{avec}\:\: 0 &\leqslant& z_{2}&\leqslant& 25 \end{array}\right.\]
Étape 4 : $\begin{pmatrix}z_{1}\\z_{2}\end{pmatrix}$ est transformé en un bloc de deux lettres en utilisant le tableau de correspondance donné dans l'étape 1.
\begin{array}{|l} \text{ Exemple } : \text{ RE } \to \begin{pmatrix}17\\4\end{pmatrix}\to \begin{pmatrix}55\\93\end{pmatrix} \to \begin{pmatrix}3\\15\end{pmatrix}\to \text{ DP }\\ \text{Le bloc RE est donc codé en DP}\\ \end{array} Justifier le passage de $\begin{pmatrix}17\\4\end{pmatrix}$ à $\begin{pmatrix}55\\93\end{pmatrix}$ puis à $\begin{pmatrix}3\\15\end{pmatrix}$.

  1. Soient $x_{1},\:x_{2},\:x'_{1},\:x'_{2}$ quatre nombres entiers compris entre 0 et 25 tels que $\begin{pmatrix}x_{1}\\x_{2}\end{pmatrix}$ et $\begin{pmatrix}x'_{1}\\x'_{2}\end{pmatrix}$ sont transformés lors du procédé de codage en $\begin{pmatrix}z_{1}\\z_{2}\end{pmatrix}$.
    1. Montrer que $\left\{\begin{array}{l c l} 3x_{1}+ x_{2} & \equiv& 3x'_{1} + x'_{2} \quad (26)\\ 5x_{1}+ 2x_{2}&\equiv&5x'_{1} + 2x'_{2} \quad (26). \end{array}\right.$
    2. En déduire que $x_{1} \equiv x'_{1}\quad (26)$ et $x_{2} \equiv x'_{2} \quad (26)$ puis que $x_{1} = x'_{1}$ et $x_{2} = x'_{2}$.
  2. On souhaite trouver une méthode de décodage pour le bloc DP :
    1. Vérifier que la matrice $C' = \begin{pmatrix}2&- 1\\- 5&3\end{pmatrix}$ est la matrice inverse de $C$.
    2. Calculer $\begin{pmatrix}y_{1}\\y_{2}\end{pmatrix}$ tels que $\begin{pmatrix}y_{1}\\y_{2}\end{pmatrix} = \begin{pmatrix}2&- 1\\- 5&3\end{pmatrix}\begin{pmatrix}3\\15\end{pmatrix}$.
    3. Calculer $\begin{pmatrix}x_{1}\\x_{2}\end{pmatrix}$ tels que $\left\{\begin{array}{l c l} x_{1}&\equiv &y_{1}\quad (26)\:\: \text{avec}\:0 \leqslant x_{1} \leqslant 25\\ x_{2}&\equiv &y_{2}\quad (26)\:\: \text{avec}\:0 \leqslant x_{2} \leqslant 25\\ \end{array}\right.$
    4. Quel procédé général de décodage peut-on conjecturer ?
  3. Dans cette question nous allons généraliser ce procédé de décodage. On considère un bloc de deux lettres et on appelle $z_{1}$ et $z_{2}$ les deux entiers compris entre 0 et 25 associés à ces lettres à l'étape 3. On cherche à trouver deux entiers $x_{1}$ et $x_{2}$ compris entre 0 et 25 qui donnent la matrice colonne $\begin{pmatrix}z_{1}\\z_{2}\end{pmatrix}$ par les étapes 2 et 3 du procédé de codage. Soient $y'_{1}$ et $y'_{2}$ tels que $\begin{pmatrix}y'_{1}\\y_{2}\end{pmatrix} = C' \begin{pmatrix}z_{1}\\z_{2}\end{pmatrix}$ où $C' = \begin{pmatrix}2&- 1\\- 5&3\end{pmatrix}$.
    Soient $x_{1}$ et $x_{2}$, les nombres entiers tels que $\left\{\begin{array}{l c l} x_{1}&\equiv & y'_{1} \quad (26) \: \text{avec}\:0 \leqslant x_{1}\leqslant 25\\ x_{2}&\equiv &y'_{2} \quad (26) \: \text{avec}\:0 \leqslant x_{2}\leqslant 25 \end{array}\right.$
    Montrer que $\left\{\begin{array}{l c l} 3x_{1}+ x_{2} & \equiv& z_{1} \quad (26)\\ 5x_{1}+ 2x_{2}&\equiv&z_{2} \quad (26). \end{array}\right.$. Conclure.
  4. Décoder QC.

Correction Spécialité
Page

  • Vues: 30996

Rechercher