Loi normale exercices

 

$$ \newcommand{\mtn}{\mathbb{N}} \newcommand{\mtns}{\mathbb{N}^*} \newcommand{\mtz}{\mathbb{Z}} \newcommand{\mtr}{\mathbb{R}} \newcommand{\mtk}{\mathbb{K}} \newcommand{\mtq}{\mathbb{Q}} \newcommand{\C}{\mathbb{C}} \newcommand{\mch}{\mathcal{H}} \newcommand{\mcp}{\mathcal{P}} \newcommand{\mcb}{\mathcal{B}} \newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}} \newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}} \newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)} \newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}} \newcommand{\mcd}{\mathcal{D}} \newcommand{\ic}{\text{i}} \newcommand{\mcsns}{\mathcal{S}_n^{++}} \newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)} \DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh} \DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect} \DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat} \DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg} \DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam} \DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon} \newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n} \newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![} \newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)} \newcommand{\pss}[2]{\langle #1,#2\rangle} \newcommand{\GR}{\mathbb{R}} $$

 

Quelques exercices pour s'entraîner…

Exercice 1

Enoncé

En 1955, Wechler a proposé de mesurer le QI (Quotient Intellectuel) des adultes grâce à deux échelles permettant de mesurer les compétences verbales et les compétences non verbales.

On compare le score global de la personne testée avec la distribution des scores obtenu par un échantillon représentatif de la population d'un âge donné, dont les performances suivent une loi normale ayant pour moyenne 100 et pour écart-type 15.

  1. Quel est le pourcentage de personnes dont le QI est inférieur à 80?
  2. Quelle chance a-t-on d'obtenir un QI compris entre 100 et 110 ?
  3. un QI compris entre 90 et 100 ?
  4. un QI compris entre 105 et 110 ?
  5. Un patient obtenant un score de 69 fait-il partie des 5% inférieur de la distribution ?
  6. En dessous de quel QI se trouve le tiers des individus ?
  7. Quel QI minimum faut-il obtenir pour faire partie des 5% d'individus les plus performants ?

 

Corrigé
 
 

Exercice 8

Exercice 11
Exercice 12
Exercice 13
Exercice 14
Exercice 15
Exercice 16

 

 

 

 

 

  • Vues: 1180

Rechercher