Baccalauréat S (obligatoire) Polynésie 5 septembre 2017 - Correction Exercice 4

Page 8 sur 8: Correction Exercice 4

Correction de l'exercice 4 5 points


Candidats N'AYANT PAS SUIVI l'enseignement de spécialité mathématiques


Les parties A et B sont indépendantes.
On s'intéresse à une population de tortues vivant sur une île et dont le nombre d'individus diminue de façon inquiétante.

Partie A


Au début de l'an 2000, on comptait $300$ tortues. Une étude a permis de modéliser ce nombre de tortues par la suite $\left(u_n\right)$ définie par : \[\left\{\begin{array}{r c l} u_0 &=&0,3\\ u_{n+1} &=&0,9u_n\left(1 - u_n\right) \end{array}\right.\] où pour tout entier naturel $n$,\: $u_n$ modélise le nombre de tortues, en milliers, au début de l'année $2000+n$.

  1. Calculer, dans ce modèle, le nombre de tortues au début de l'année 2001 puis de l'année 2002.
  2. $u_1=0,9\times 0,3(1-0,3)=0,189$
    $u_2=0,9\times 0,189(1-0,189)\approx 0,138$
    Au début de l’année 2001 il y avait donc $189$ tortues et $138$ au début de l’année 2002.
    $\quad$
  3. On admet que, pour tout entier naturel $n\:$, $u_n$ et $1 - u_n$ appartiennent à l'intervalle $[0~;~1]$.
    1. Montrer que, pour tout entier naturel $n\:$, $0 \leqslant u_{n+1} \leqslant 0,9u_n$.
    2. Pour tout entier naturel $n$ on sait que $u_n \geq 0$.
      De plus :
      $u_{n+1}-0,9u_n=0,9u_n\left(1-u_n\right)-0,9u_n=0,9u_n\left(1-u_n-1\right)=-0,9{u_n}^2\leq 0$
      Par conséquent $0\leq u_{n+1} \leq 0,9u_n$.
      $\quad$
    3. Montrer que, pour tout entier naturel $n$, $0 \leqslant u_n \leqslant 0,3 \times 0,9^n$.
    4. Montrons ce résultat par récurrence.
      Initialisation : si $n=0$ alors $u_0=0,3$ et $0,3 \times 0,9^0=0,3$ ainsi $0 \leq u_0 \leq 0,3 \times 0,9^0$.
      La propriété est vraie au rang $0$.
      $\quad$
      Hérédité : Supposons la propriété vraie au rang $n$ : $ 0\leq u_n \leq 0,3 \times 0,9^n$
      Montrons qu’elle est vraie au rang $n+1$ c’est-à-dire que $0 \leq u_{n+1} \leq 0,3\times 0,9^{n+1}$
      On sait que $0 \leq u_{n+1} \leq 0,9u_n \leq 0,3 \times 0,9^n \times 0,9$
      Soit $0 \leq u_{n+1} \leq 0,3\times 0,9^{n+1} $
      La propriété est donc vraie au rang $n+1$.
      $\quad$
      Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
      Par conséquent, pour tout entier naturel $n$, on a $0 \leq u_n \leq 0,3 \times 0,9^n$.
      $\quad$
    5. Déterminer la limite de la suite $\left(u_n\right)$. Que peut-on en conclure sur l'avenir de cette population de tortues ?
  4. Des études permettent d'affirmer que, si le nombre de tortues à une date donnée est inférieur au seuil critique de $30$~individus, alors l'espèce est menacée d'extinction. On souhaite qu'à la fin de son exécution, l'algorithme ci-dessous affiche la dernière année avant laquelle il reste au moins $30$ tortues. Recopier et compléter l'algorithme afin qu'il satisfasse cette exigence. $$\begin{array}{|l c|}\hline \text{Variables} : & u \text{ est un réel}\\ & n \text{ est un entier naturel}\\ \textbf{Traitement} : & u \text{ prend la valeur } 0,3 \\ & n \text{ prend la valeur } 0 \\ &\text{Tant que } \:\ldots\:\text{ faire :}\\ &\hspace{0,5cm}\begin{array}{|l}\\ ~\\ ~\\ ~\\ \end{array}\\ &\text{Fin Tant que}\\ \text{Sortie} : &\text{Afficher} \:\ldots\\ \hline \end{array} $$ La version allégée à partir de 2018: $$\begin{array}{|l|}\hline& u\leftarrow 0,3 \\ & n \leftarrow 0 \\ &\text{Tant que } \:\ldots\:\text{ faire :}\\ &\hspace{0,5cm}\begin{array}{|l}\\ ~\\ ~\\ ~\\ \end{array}\\ &\text{Fin Tant que}\\ &\text{Afficher} \:\ldots\\ \hline \end{array} $$
  5. Variables :
    $\quad$ $u$ est un réel
    $\quad$ $n$ est un entier naturel
    Traitement :
    $\quad$ $u$ prend la valeur $0,3$
    $\quad$ $n$ prend la valeur $0$
    $\quad$ Tant que $u \geq 0,03$ faire
    $\qquad$ $u$ prend la valeur $0,9u(1-u)$
    $\qquad$ $n$ prend la valeur $n+1$
    $\quad$ Fin Tant que
    Sortie :
    $\quad$ Afficher $1999+n$
    $\quad$

PartieB


Au début de l'année 2010, il ne reste que $32$ tortues. Afin d'assurer la pérennité de l'espèce, des actions sont menées pour améliorer la fécondité des tortues. L'évolution de la population est alors modifiée et le nombre de tortues peut être modélisé par la suite $\left(v_n\right)$ définie par : \[\left\{\begin{array}{r c l} v_{10} &=&0,032\\ v_{n+1} &=&1,06v_n\left(1 - v_n\right) \end{array}\right.\] où pour tout entier naturel $n \geqslant 10$,\: $v_n$ modélise le nombre de tortues, en milliers, au début de l'année $2000+n$.

  1. Calculer le nombre de tortues au début de l'année 2011 puis de l'année 2012.
  2. $v_{11}=1,06\times 0,032(1-0,032) \approx 0,033$
    $v_{12}=1,06\times 0,033(1-0,033) \approx 0,034$
    Il y a donc $33$ tortues au début de l’année 2011 et $34$ au début de l’année 2012.
    $\quad$
  3. On admet que, dans ce modèle, la suite $\left(v_n\right)$ est croissante et convergente. On appelle $\ell$ sa limite. Montrer que $\ell$ vérifie : \[\ell = 1,06\ell(1 - \ell).\]
  4. $\lim\limits_{n \to +\infty} v_n =\ell$ donc $\lim\limits_{n \to +\infty} v_{n+1} =\ell$
    De plus $\lim\limits_{n \to +\infty}1,06v_n\left(1-v_n\right)=1,06\ell(1-\ell)$.
    Par conséquent $\ell$ vérifie $\ell=1,06\ell(1-\ell)$.
    $\quad$
  5. La population de tortues est-elle encore en voie d'extinction ?
  6. $\ell=1,06\ell(1-\ell) \iff 1,06\ell(1-\ell)-\ell =0\iff \ell(0,06-1,06\ell)=0$
    $\iff \ell=0$ ou $0,06-1,06\ell=0$
    $\iff \ell=0$ ou $\ell=\dfrac{3}{53}$
    La suite $\left(v_n\right)$ étant croissante et convergente sa limite est $\ell=\dfrac{3}{53}>0,03$.
    L’espèce n’est plus menacée d’extinction.
    $\quad$
Page
  • Vues: 19318

Rechercher