Baccalauréat S Métropole- La Réunion 12 septembre 2016 - Exercice 4
Page 7 sur 10
Exercice 4 5 points
Un hélicoptère est en vol stationnaire au-dessus d'une plaine. Un passager lâche verticalement un colis muni d'un parachute.
Partie 1
Soit $v_1$ la fonction définie sur $[0~;~+\infty[$ par : \[v_1(t) = 5 \times \dfrac{\text{e}^{0,3t} - 1}{\text{e}^{0,3t} + 1}.\]
- Déterminer le sens de variation de la fonction $v_1$.
- On suppose, dans cette question, que le parachute fonctionne correctement. On admet que $t$ secondes après qu'il a été lâché, la vitesse du colis (exprimée en m.s$^{-1}$) est égale, avant d'atteindre le sol, à $v_1(t)$. On considère que le colis arrive en bon état sur le sol si sa vitesse à l'arrivée n'excède pas 6 m.s$^{-1}$. Le colis risque-t-il d'être endommagé lorsque le parachute s'ouvre correctement ? Justifier.
Partie 2
On suppose, dans cette partie, que le parachute ne s'ouvre pas. On admet que, dans ce cas, avant que le colis atteigne le sol, sa vitesse (exprimée en m.s$^{-1}$), $t$ secondes après avoir été lâché par le passager, est donnée par : \[v_2(t) = 32,7 \left(1 - \text{e}^{- 0,3t}\right).\]
- Quelle est la vitesse, exprimée en m.s$^{-1}$, atteinte par le colis au bout de 10 secondes ? Arrondir à 0,1 m.s$^{-1}$.
- Résoudre l'équation $v_2(t) = 30$ m.s$^{-1}$. Donner une interprétation concrète de la solution de cette équation dans le cadre de cet exercice.
- On sait que la chute du colis dure 20 secondes. On admet que la distance, en mètres, qui sépare l'hélicoptère du colis, $T$ secondes après avoir été lâché par le passager, est donnée par: \[d(T) = \displaystyle\int_0^T v_2(t)\:\text{d}t.\]
- Montrer que, pour tout réel $T$ de l'intervalle [0 ; 20], $d(T) = 109\left(\text{e}^{- 0,3 T} + 0,3 T - 1\right)$.
- Déterminer une valeur approchée à 1 m près de la distance parcourue par le colis lorsqu'il atteint le sol.
- Déterminer un encadrement d'amplitude $0,1$~s du temps mis par le colis pour atteindre le sol si on l'avait lâché d'une hauteur de $700$ mètres.
- Vues: 29826