Rédigé par Luc Giraud le . Publié dans Annales STI2D 2013.

Baccalauréat STI2D NOUVELLE CALÉDONIE Mars 2014 2013

Exercice 1 4 points


Nombres complexes

On note $\mathrm{i}$ le nombre complexe de module 1 et d'argument $\dfrac{\pi}{2}$. On considère les nombres complexes $z_{1}, z_{2}$ et $z_{3}$ définis par: \[z_{1} = 1 + \mathrm{i}\sqrt{3}, \quad z_{2} = e^{- \mathrm{i}\frac{\pi}{4}}\quad \text{et} \quad z_{3} = e^{\mathrm{i}\frac{\pi}{12}}.\]

  1. Déterminer l'écriture exponentielle de $z_{1}$.
  2. Déterminer l'écriture algébrique de $z_{2}$.
  3. Démontrer que $z_{1} \times z_{2} = 2z_{3}$.
  4. En déduire l'écriture algébrique de $z_{3}$.
  5. En déduire que $\cos \left(\dfrac{\pi}{12}\right) = \dfrac{\sqrt{2} + \sqrt{6}}{4}$ et $\sin \left(\dfrac{\pi}{12}\right) = \dfrac{- \sqrt{2} + \sqrt{6}}{4}$.

Correction de l'exercice 1 (4 points)


Nombres complexes

On note $\mathrm{i}$ le nombre complexe de module 1 et d'argument $\dfrac{\pi}{2}$. On considère les nombres complexes $z_{1}, z_{2}$ et $z_{3}$ définis par: \[z_{1} = 1 + \mathrm{i}\sqrt{3}, \quad z_{2} = e^{- \mathrm{i}\frac{\pi}{4}}\quad \text{et} \quad z_{3} = e^{\mathrm{i}\frac{\pi}{12}}.\]

  1. Déterminer l'écriture exponentielle de $z_{1}$.
  2. L'écriture exponentielle d'un nombre complexe est $\rho e^{i\theta}$ où $\rho$ est son module et $\theta$ son argument.
    • Module : $|z_1|=\sqrt{a^2+b^2}=\sqrt{1^2+\sqrt{3}^2}=\sqrt{4}=2 $
    • Argument: $$\left\{ \begin{array}{l } \cos(\theta)=\dfrac{a}{r}= \dfrac{1}{2 }\\ \sin(\theta)=\dfrac{b}{r}= = \dfrac{\sqrt 3}{ 2} \end{array} \right.$$
    Ainsi $\theta= \dfrac{\pi}{3}$ convient; on a donc: $$z_1=\left[2 ; \dfrac{\pi}{3}\right] \text{ ou } z_1=2 \left [\cos\left ( \dfrac{\pi}{3}\right )+i\sin\left ( \dfrac{\pi}{3}\right )\right ]= 2e^{ i\frac{ \pi}{3}}$$
  3. Déterminer l'écriture algébrique de $z_{2}$.
  4. $z_2= e^{-i \frac{\pi}{4}}=\cos \left(-\frac{\pi}{4}\right)+ i\sin \left(-\frac{\pi}{4}\right)$. $$z_2=\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2}$$.
  5. Démontrer que $z_{1} \times z_{2} = 2z_{3}$.
  6. Démontrons que $z_{1} \times z_{2} = 2z_{3}$. $z_1 \times z_2=\rho_1\rho_2 e^{i(\theta_1+\theta_2)}$.
    Par conséquent $z_1z_2=2 e^{i\left(\frac{\pi}{3}-\frac{\pi}{4}\right)}=2e^{i\frac{\pi}{12}}=2z_3$.
  7. En déduire l'écriture algébrique de $z_{3}$.
  8. Formons l'écriture algébrique de $z_{3}$.

    $z_3=\cos (\frac{\pi}{12})+ i \sin (\frac{\pi}{12})$. $$\begin{array}{ll}2z_3&=(1+i\sqrt{3})\left(\frac{\sqrt{2}}{2}-i\frac{\sqrt{2}}{2}\right)\\ &=\frac{\sqrt{2}}{2}-i\frac{\sqrt{2}}{2}+i\sqrt{3}\left(\frac{\sqrt{2}}{2}\right)+\sqrt{3}\left(\frac{\sqrt{2}}{2}\right)\\ &=\frac{\sqrt{2}+\sqrt{6}}{2}+i\frac{\sqrt{6}-\sqrt{2}}{2}\end{array}$$ $$z_3=\dfrac{\sqrt{2}+\sqrt{6}}{4}+i\dfrac{\sqrt{6}-\sqrt{2}}{4}$$
  9. En déduire que $\cos \left(\dfrac{\pi}{12}\right) = \dfrac{\sqrt{2} + \sqrt{6}}{4}$ et $\sin \left(\dfrac{\pi}{12}\right) = \dfrac{- \sqrt{2} + \sqrt{6}}{4}$.
  10. Calculons alors $\cos \left(\frac{\pi}{12}\right)$ et $\sin \left(\frac{\pi}{12}\right)$

    $\cos \left(\frac{\pi}{12}\right) +i \sin \left(\frac{\pi}{12}\right)=\frac{\sqrt{2}+\sqrt{6}}{4}+i\frac{\sqrt{6}-\sqrt{2}}{4}$.
    Nous en déduisons donc $\cos \left(\frac{\pi}{12}\right) = \frac{\sqrt{2}+\sqrt{6}}{4}$ et $ \sin \left(\frac{\pi}{12}\right)=\frac{\sqrt{6}-\sqrt{2}}{4}$.

Exercice 2 4 points


Probabilités

Un groupe agricole vend des sachets de graines donnant des plantes résistantes aux maladies. Le directeur de ce groupe affirme que 92 $\, \%$ des sachets sont efficaces et donnent des plantes résistantes. Dans cet exercice, les valeurs approchées seront arrondies à $10^{-2}$ près.


  1. On prélève au hasard un échantillon de 100 sachets.
    1. Déterminer l'intervalle de fluctuation asymptotique à 95 $\, %$ de la fréquence de sachets efficaces sur un échantillon de taille 100.
    2. Dans le prélèvement de 100 sachets, 88 donnent des plantes résistantes. Peut-on rejeter l'hypothèse du directeur ?
  2. On considère la variable aléatoire $X$ qui, à tout prélèvement de 100 sachets, associe le nombre de sachets donnant des plantes résistantes. On admet que la variable aléatoire $X$ suit la loi binomiale de paramètres $n = 100$ et $p = 0,92$.
    1. Déterminer l'espérance et l'écart type de $X$ (arrondi à 0,01 près).
    2. La variable aléatoire $X$ peut être approchée par la variable aléatoire $Y$ qui suit la loi normale d'espérance 92 et d'écart type 2,7. En utilisant la variable aléatoire $Y$, calculer la probabilité que le nombre de sachets donnant des plantes résistantes soit compris entre 89 et 94, c'est-à-dire calculer $P(89 \leqslant Y \leqslant 94)$.

 


Correction de l'exercice 2 (4 points)


Probabilités

Un groupe agricole vend des sachets de graines donnant des plantes résistantes aux maladies. Le directeur de ce groupe affirme que 92 $\, \%$ des sachets sont efficaces et donnent des plantes résistantes. Dans cet exercice, les valeurs approchées seront arrondies à $10^{-2}$ près.


  1. On prélève au hasard un échantillon de 100 sachets.
    1. Déterminer l'intervalle de fluctuation asymptotique à 95 $\, %$ de la fréquence de sachets efficaces sur un échantillon de taille 100.
    2. La proportion $p$ est égale à  $\1$. La taille  $n$  de l'échantillon considéré est égale à  $\2.$
      Comme  $ n =\2$ ,   $n \times p  $=\3  et $n\times (1-p)=\4,$ les conditions d'utilisation d'un intervalle de fluctuation asymptotique sont réunies.

      En effet on a bien : $$n \geq 30\;;\; n \times p \geq 5 \text{ et } n\times (1-p) \geq 5$$


      L'intervalle de fluctuation asymptotique au seuil de  $95\% $  est : $$I_{\2} = \left[\1 - 1,96\sqrt{\dfrac{\1\times \5}{\2}}~;~\1 + 1,96\sqrt{\dfrac{\1\times \5}{\2}} \right]$$ 

      $$I_{100}\approx\left[ 0.87 ~;~ 0.97 \right]$$
    3. Dans le prélèvement de 100 sachets, 88 donnent des plantes résistantes. Peut-on rejeter l'hypothèse du directeur ?
    4. Dans le prélèvement de $100$ sachets, $88$ donnent des plantes résistantes. Nous pouvons accepter l'hypothèse du directeur car dans ce lot, la fréquence de plantes résistantes $f=\dfrac{88}{100}=0,88$ appartient à l'intervalle de fluctuation.
  2. On considère la variable aléatoire $X$ qui, à tout prélèvement de 100 sachets, associe le nombre de sachets donnant des plantes résistantes. On admet que la variable aléatoire $X$ suit la loi binomiale de paramètres $n = 100$ et $p = 0,92$.
    1. Déterminer l'espérance et l'écart type de $X$ (arrondi à 0,01 près).
    2. Puisque la variable suit une loi binomiale $\mathcal{B}(100,0.92)$ l'espérance de $X$ vaut $np$ et l'écart type de $X$ vaut $\sqrt{np(1-p)}$
      (arrondi à $0,01$ près), on a
      $E(X)=100\times 0.92 =92 \quad \sigma(X)=\sqrt{100\times 0.92 \times 0.08 }\approx \ 2.71 $.
    3. La variable aléatoire $X$ peut être approchée par la variable aléatoire $Y$ qui suit la loi normale d'espérance 92 et d'écart type 2,7. En utilisant la variable aléatoire $Y$, calculer la probabilité que le nombre de sachets donnant des plantes résistantes soit compris entre 89 et 94, c'est-à-dire calculer $P(89 \leqslant Y \leqslant 94)$.
    4. 2ND DISTR 2NORMALFRép( \1 , \2,\3,\4)EXE
      Avec une calculatrice de type TI

      $$NormalFR\text{é}p(\1,\2,\3,\4) \approx \5$$

      $$P(\1 \leq \6 \leq \2)\approx \5 \text{ à } 10^{-\7} \text{ près.}$$

       

 


Exercice 3 5 points


Suites

L'iode 131 est un produit radioactif utilisé en médecine. Il peut cependant être dangereux lorsqu'on le reçoit en grande quantité. On considère un échantillon d'une population de noyaux d'iode 131 comportant $10^6$ noyaux au début de l'observation. On considère que le nombre de noyaux diminue chaque jour de 8,3 $ \, \%$. On note $u_{n}$ le nombre de noyaux de cet échantillon au bout de $n$ jours. On a donc $u_{0} = 10^6$.


  1. Calculer $u_{1}$ puis $u_{2}$.
  2. Exprimer $u_{n+1}$ en fonction de $u_{n}$. En déduire la nature de la suite $\left(u_{n}\right)$.
  3. Exprimer $u_{n}$ en fonction de $n$.
  4. Déterminer à partir de combien de jours la population de noyaux aura diminué au moins de moitié. Cette durée s'appelle la demi-vie de l'iode 131.
  5. On considère l'algorithme suivant: $$\begin{array}{|c|c|c|}\hline 1 &\text{Variables :}& n \text{ et } u \text{ sont des nombres }\\ 2 &\text{Initialisation :}& \text{ Affecter la valeur } 0 \text{ à } n\\ 3 & & \text{Affecter la valeur } 10^6 \text{ à } u\\ 4 &\text{Traitement :}& \text{ Tant que }u > \dfrac{10^6}{2} \\ 5 & &\hspace{5mm}n \text{ prend la valeur } n + 1\\ 6 & &\hspace{5mm}u \text{ prend la valeur } u \times 0,917\\ 7 & &\text{ Fin tant que }\\ 8 &\text{Sortie :} &\text{ Afficher } n\\ \hline \end{array}$$
    1. À quoi correspond la valeur $n$ en sortie de cet algorithme ?
    2. Si on programme cet algorithme, quel résultat affiche-t-il ?
    3. Pour le Césium 137, le nombre de noyaux diminue chaque année de 2,3 $\,\%$. Quelles modifications faut-il apporter à l'algorithme précédent pour trouver la demi-vie du césium 137 sachant que la population au départ est de $10^8$noyaux ?

 


Correction de l'exercice 3 (5 points)


Fonctions

L'iode 131 est un produit radioactif utilisé en médecine. Il peut cependant être dangereux lorsqu'on le reçoit en grande quantité. On considère un échantillon d'une population de noyaux d'iode 131 comportant $10^6$ noyaux au début de l'observation. On considère que le nombre de noyaux diminue chaque jour de 8,3 $ \, \%$. On note $u_{n}$ le nombre de noyaux de cet échantillon au bout de $n$ jours. On a donc $u_{0} = 10^6$.


  1. Calculer $u_{1}$ puis $u_{2}$.
  2. À un taux d'évolution de $- 8.3 \,\%$, correspond un coefficient multiplicateur de $1- 0.083 $ soit $ 0.917 $.
    $u_1=10^6\times 0.917 \quad u_2=\left( 0.917 \times 10^6\right) \times 0.917 \approx 0.841 \times 10^6$
  3. Exprimer $u_{n+1}$ en fonction de $u_{n}$. En déduire la nature de la suite $\left(u_{n}\right)$.
  4. $u_{n+1}= 0.917 u_{n}$. Passant d'un terme au suivant en le multipliant par un même nombre, la suite $\left(u_{n}\right)$ est une suite géométrique de premier terme $10^6$ et de raison $0.917$ .
  5. Exprimer $u_{n}$ en fonction de $n$.
  6. Le terme général d'une suite géométrique de premier terme $u_0$ et de raison $q$ est $u_n=u_0q^n$.
    Par conséquent $u_n=10^6\times( 0.917 )^n$.
  7. Déterminer à partir de combien de jours la population de noyaux aura diminué au moins de moitié. Cette durée s'appelle la demi-vie de l'iode 131.
  8. Pour cela, résolvons $u_n \leqslant \dfrac{10^6}{2}$ $$\begin{array}{ll} u_n \leqslant \dfrac{10^6}{2}& \iff 0.917 ^n \times 10^6 \leqslant \dfrac{10^6}{2}\\ &\iff 0.917 ^n \leqslant \dfrac{1}{2} \\ & \ln \left(0.917 ^n\right) \leqslant \ln\left(\dfrac{1}{2}\right)\\ &\iff n \ln 0.917 \leqslant -\ln 2 \qquad\text{car } \ln \dfrac{1}{b}=-\ln b \\ &\iff n \geqslant \dfrac{-\ln 2}{\ln 0.917 } \qquad \text{car }\ln (0.917) < 0\\ \end{array}$$ $$\dfrac{-\ln 2}{\ln (0.917)} \approx 7.99959$$ Au bout de huit jours, la population de noyaux aura diminué au moins de moitié. Cette durée s'appelle la demi-vie de l'iode 131.
  9. On considère l'algorithme suivant: $$\begin{array}{|c|c|c|}\hline 1 &\text{Variables :}& n \text{ et } u \text{ sont des nombres }\\ 2 &\text{Initialisation :}& \text{ Affecter la valeur } 0 \text{ à } n\\ 3 & & \text{Affecter la valeur } 10^6 \text{ à } u\\ 4 &\text{Traitement :}& \text{ Tant que }u > \dfrac{10^6}{2} \\ 5 & &\hspace{5mm}n \text{ prend la valeur } n + 1\\ 6 & &\hspace{5mm}u \text{ prend la valeur } u \times 0,917\\ 7 & &\text{ Fin tant que }\\ 8 &\text{Sortie :} &\text{ Afficher } n\\ \hline \end{array}$$
    1. À quoi correspond la valeur $n$ en sortie de cet algorithme ?
    2. La valeur $n$ en sortie de cet algorithme correspond à la demi-vie. $u$ correspond au nombre de noyaux et $n$ au nombre de boucles qu'il faut effectuer pour avoir la moitié du nombre de noyaux.
    3. Si on programme cet algorithme, quel résultat affiche-t-il ?
    4. Si on programme cet algorithme, il affiche 8, la réponse trouvée à la question 4.
    5. Pour le Césium 137, le nombre de noyaux diminue chaque année de 2,3 $\,\%$. Quelles modifications faut-il apporter à l'algorithme précédent pour trouver la demi-vie du césium 137 sachant que la population au départ est de $10^8$noyaux ?
    6. Pour le Césium 137, le nombre de noyaux diminue chaque année de 2,3$\,\%$.
      Dans la ligne « affecter à $u$ la valeur $10^6$» nous allons remplacer $10^6$ par $10^8$ et dans le traitement de $u$ nous allons remplacer 0.917 par 0.977 , coefficient multiplicateur associé à une baisse de $ 2.3 \,\%$.

 


Exercice 4 7 points


Fonctions exponentielles

Dans tout l'exercice, on désigne par $\mathbb R$ l'ensemble des nombres réels.


On donne ci-dessous une petite partie de la courbe représentative $\mathcal{C}$ d'une fonction $f$ définie et dérivable sur $\mathbb R$, dans un repère orthonormé du plan. On note $f'$ la fonction dérivée de $f$. La courbe $\mathcal{C}$ passe par le point $A (0 ; 5)$ et par le point $B$ d'abscisse 2. La tangente $T_A$ à la courbe au point $A$ passe par le point $C(1 ; 1)$ et la tangente $T_B$ au point $B$ est horizontale.


Partie A

Dans ce questionnaire à choix multiples, aucune justification n'est demandée. Pour chacune des questions, une seule des réponses proposées est correcte.
Une bonne réponse rapporte $0,5$ point.
Une mauvaise réponse ou l'absence de réponses n'enlève ni ne rapporte aucun point. On notera sur la copie le numéro de la question et la réponse choisie.


  1. La valeur de $f(0)$ est :
    1. $- 4$
    2. $4$
    3. $1,2$
    4. autre réponse
  2. La valeur de $f'(0)$ est :
    1. $- 4$
    2. $4$
    3. $1,2$
    4. autre réponse
  3. La valeur de $f'(2)$ est :
    1. $0$
    2. $2,1$
    3. $3 $
    4. autre réponse
  4. Un encadrement de $\displaystyle\int_{0}^2 f(x) \, dx$ par des entiers naturels est :
    1. $3 \leqslant \displaystyle\int_{0}^2 f(x) \, dx \leqslant 4$
    2. $5 \leqslant \displaystyle\int_{0}^2 f(x) \, dx \leqslant 7$
    3. $2 \leqslant \displaystyle\int_{0}^2 f(x) \, dx \leqslant 5$
    4. $0 \leqslant \displaystyle\int_{0}^2 f(x) \, dx \leqslant 2$

Partie B

La fonction $f$ représentée dans la PARTIE A est définie sur $\mathbb R$ par $f(x) = \left(- x^2 - 2x + 2\right)e^{- x} + 3$.

  1. On admet que la limite de la fonction $f$ en $+ \infty$ est 3. Déterminer la limite de $f$ en $- \infty$.
  2. On désigne par $f'$ la fonction dérivée de la fonction $f$ et on admet que pour tout nombre réel $x$ appartenant à $\mathbb R$, $f'(x) = \left(x^2 - 4\right)e^{- x}$.
    1. Étudier le signe de $f'(x)$ suivant les valeurs de $x$.
    2. En déduire le tableau de variation de la fonction $f$.
  3. On considère la fonction $F$ définie sur $\mathbb R$ par $F(x) = \left(x^2 + 4x + 2\right)e^{- x} + 3x$. Vérifier que la fonction $F$ est une primitive de la fonction $f$ sur $\mathbb R$.
  4. On considère le domaine $\mathcal{D}$ du plan limité par la courbe $\mathcal{C}$ l'axe des abscisses et les droites d'équations $x = 0$ et $x = 2$.
    1. Calculer la valeur exacte de l'aire $\mathcal{A}$, exprimée en unités d'aire, du domaine $\mathcal{D}$.
    2. Donner une valeur approchée de $\mathcal{A}$ au centième.

 


Exercice 4 7 points


Fonctions exponentielles

Dans tout l'exercice, on désigne par $\mathbb R$ l'ensemble des nombres réels.


On donne ci-dessous une petite partie de la courbe représentative $\mathcal{C}$ d'une fonction $f$ définie et dérivable sur $\mathbb R$, dans un repère orthonormé du plan. On note $f'$ la fonction dérivée de $f$. La courbe $\mathcal{C}$ passe par le point $A (0 ; 5)$ et par le point $B$ d'abscisse 2. La tangente $T_A$ à la courbe au point $A$ passe par le point $C(1 ; 1)$ et la tangente $T_B$ au point $B$ est horizontale.


Partie A

Dans ce questionnaire à choix multiples, aucune justification n'est demandée. Pour chacune des questions, une seule des réponses proposées est correcte.
Une bonne réponse rapporte $0,5$ point.
Une mauvaise réponse ou l'absence de réponses n'enlève ni ne rapporte aucun point. On notera sur la copie le numéro de la question et la réponse choisie.


  1. La valeur de $f(0)$ est :
    1. $- 4$
    2. $4$
    3. $1,2$
    4. autre réponse
  2. La courbe $\mathcal{C}$ passe par le point $A(0;5)$ donc $f(0)=5$
  3. La valeur de $f'(0)$ est :
    1. $- 4$
    2. $4$
    3. $1,2$
    4. autre réponse
  4. Le nombre dérivé $f'(0)$ est égal au coefficient directeur de la tangente $T_A$ à la courbe au point $A(0;5)$ or cette tangente passe également par le point $C(1;1)$ d'où $f'(0)=\dfrac{y_C-y_A}{x_C-x_A}$ . Soit $f'(0)=\dfrac{1-5}{1-0}=-4$
  5. La valeur de $f'(2)$ est :
    1. $0$
    2. $2,1$
    3. $3 $
    4. autre réponse
  6. La tangente $T_B$ à la courbe au point $B$ d'abscisse 2 est parallèle à l'axe des abscisses donc $f'(2)=0;$
  7. Un encadrement de $\displaystyle\int_{0}^2 f(x) \, dx$ par des entiers naturels est :
    1. $3 \leqslant \displaystyle\int_{0}^2 f(x) \, dx \leqslant 4$
    2. $5 \leqslant \displaystyle\int_{0}^2 f(x) \, dx \leqslant 7$
    3. $2 \leqslant \displaystyle\int_{0}^2 f(x) \, dx \leqslant 5$
    4. $0 \leqslant \displaystyle\int_{0}^2 f(x) \, dx \leqslant 2$
  8. L'intégrale $\displaystyle\int_{0}^2 f(x) \, d x$ est égale à l'aire, exprimée en unités d'aire, du domaine limité par la courbe $\mathcal{C}$ l'axe des abscisses et les droites d'équations $x=0$ et $x=2$. Or cette aire est visiblement supérieure à 5 unités d'aire. $5 \leqslant \displaystyle\int_{0}^2 f(x) \,d x \leqslant 7$

Partie B

La fonction $f$ représentée dans la PARTIE A est définie sur $\mathbb R$ par $f(x) = \left(- x^2 - 2x + 2\right)e^{- x} + 3$.

  1. On admet que la limite de la fonction $f$ en $+ \infty$ est 3. Déterminer la limite de $f$ en $- \infty$.
  2. Au voisinage de $-\infty$ , une fonction polynôme à la même limite que son monôme de plus haut degré.


    $ \lim\limits_{x \to -\infty}- x^2 - 2x + 2= \lim\limits_{x \to -\infty}- x^2 =-\infty$

    $\left.\begin{array}{l} \lim\limits_{x \to \1}~\2=\3\\ \lim\limits_{x \to \1}~\4=\5 \end{array}\right\}$ par \8 on obtient: $\lim\limits_{x \to \1}~\6=\7$
    $\left.\begin{array}{l} \lim\limits_{x \to -\infty}\left(- x^2 - 2x + 2\right)e^{- x}=-\infty\\ \lim\limits_{x \to -\infty}~3=3 \end{array}\right\}$ par somme on obtient: $\lim\limits_{x \to -\infty}~f(x)= -\infty$
    $\lim\limits_{x \to +\infty}f(x)=-\infty$
  3. On désigne par $f'$ la fonction dérivée de la fonction $f$ et on admet que pour tout nombre réel $x$ appartenant à $\mathbb R$, $f'(x) = \left(x^2 - 4\right)e^{- x}$.
    1. Étudier le signe de $f'(x)$ suivant les valeurs de $x$.
    2. La fonction exponentielle étant strictement positive sur $\mathbb R$, on déduit que pour tout réel $x ; e^{- x}>0$, et ainsi $f'(x)$ a le signe de $x^2-4$ $x^2-4$ est un trinôme du second degré qui a pour racines $-2$ et $2$; il a donc le signe de $a=1$ à l'extérieur des racines et celui de $-a$ à l'intérieur.
    3. En déduire le tableau de variation de la fonction $f$.
  4. On considère la fonction $F$ définie sur $\mathbb R$ par $F(x) = \left(x^2 + 4x + 2\right)e^{- x} + 3x$. Vérifier que la fonction $F$ est une primitive de la fonction $f$ sur $\mathbb R$.
  5. Ici $F(x) = \left(x^2 + 4x + 2\right)e^{- x} + 3x$ est du type $F=u+v$, ainsi $F' =u'+v'$.
    où $u(x)= \left(x^2 + 4x + 2\right)e^{- x} $ , donc $u=ab$ d'où $u'=a'b+b'a$.
    $a(x)= \left(x^2 + 4x + 2\right)$ et $b(x)=e^{- x}$
    Alors $a'(x)= \left(2x+4\right)$ et $b'(x)=-e^{- x}$
    Puis $u'(x)=\left(2x+4\right) e^{- x}+ \left(-e^{- x}\right)\left(x^2 + 4x + 2\right)=e^{- x}\left(2x+4 -x^2 - 4x - 2\right)=e^{- x}\left( -x^2 - 2x+ 2\right)$ et $v'(x)=3$, et donc $F'(x)=u'(x)+v'(x)=e^{- x}\left( -x^2 - 2x+ 2\right)+3=f(x)$
    $F'(x)=f(x)$, et donc la fonction $F$ est une primitive de la fonction $f$ sur $\mathbb R$.
  6. On considère le domaine $\mathcal{D}$ du plan limité par la courbe $\mathcal{C}$ l'axe des abscisses et les droites d'équations $x = 0$ et $x = 2$.
    1. Calculer la valeur exacte de l'aire $\mathcal{A}$, exprimée en unités d'aire, du domaine $\mathcal{D}$.
    2. Sur l'intervalle $[0;2]$ la fonction $f$ est strictement décroissante et $f(2)=3-6 e^{-2} \approx 2,19$ donc $f$ est positive sur l'intervalle $[0;2]$.
      Par conséquent, l'aire $\mathcal{A}$, exprimée en unités d'aire, du domaine $\mathcal{D}$ est égale à l'intégrale de la fonction $f$ sur l'intervalle $[0;2]$ :
      $\displaystyle\int_{0}^2 f(x) \,d x =F(2)-F(0)$.
      $F(2)-F(0)= 14 e^{-2} + 6-2=14 e^{-2} +4$
      $\mathcal{A}=14 e^{-2} +4$ unités d'aire.
    3. Donner une valeur approchée de $\mathcal{A}$ au centième.
    4. $\mathcal{A}\approx 5,89$ unités d'aire.
  7.