Baccalauréat S Métropole- La Réunion 12 septembre 2016
Exercice 1 6 points
Les trois parties sont indépendantes. Les résultats des probabilités seront arrondis à $10^{-3} $ près.
Partie 1
On estime qu'en 2013 la population mondiale est composée de 4,6 milliards de personnes âgées de 20 à 79 ans et que 46,1 % des personnes âgées de 20 à 79 ans vivent en zone rurale et 53,9 % en zone urbaine. En 2013, d'après la fédération internationale du diabète, 9,9 % de la population mondiale âgée de 20 à 79 ans vivant en zone urbaine est atteinte de diabète et 6,4 % de la population mondiale âgée de 20 à 79 ans vivant en zone rurale est atteinte de diabète. On interroge au hasard une personne âgée de 20 à 79 ans. On note :
- $R$ l'évènement : «la personne choisie habite en zone rurale » ,
- $D$ l'évènement: «la personne choisie est atteinte de diabète » .
- Traduire cette situation à l'aide d'un arbre de probabilité.
-
- Calculer la probabilité que la personne interrogée soit diabétique.
- La personne choisie est diabétique. Quelle est la probabilité qu'elle habite en zone rurale ?
Partie 2
Une personne est dite en hypoglycémie si sa glycémie à jeun est inférieure à 60 mg.dL$^{-1}$ et elle est en hyperglycémie si sa glycémie à jeun est supérieure à 110 mg. dL$^{-1}$. La glycémie à jeun est considérée comme «normale » si elle est comprise entre 70 mg.dL$^{-1}$ et 110 mg.dL$^{-1}$. Les personnes ayant un taux de glycémie compris entre 60 et 70 mg.dL$^{-1}$ ne font pas l'objet d'un suivi particulier. On choisit au hasard un adulte dans cette population. Une étude a permis d'établir que la probabilité qu'il soit en hyperglycémie est 0,052 à $10^{-3}$ près. Dans la suite on admettra que cette probabilité est égale à $0,052$. On modélise la glycémie à jeun, exprimée en mg.dL$^{-1}$, d'un adulte d'une population donnée, par une variable aléatoire $X$ qui suit une loi normale d'espérance $\mu$ et d'écart-type $\sigma$. On donne ci-dessous la représentation graphique de la densité de probabilité de la variable aléatoire $X$.
- Quelle est la probabilité que la personne choisie ait une glycémie à jeun «normale» ?
- Déterminer la valeur de $\sigma$ arrondie au dixième.
- Dans cette question, on prend $\sigma = 12$. Calculer la probabilité que la personne choisie soit en hypoglycémie.
Partie 3
Afin d'estimer la proportion, pour l'année 2013, de personnes diagnostiquées diabétiques dans la population française âgée de 20 à 79 ans, on interroge au hasard 10000 personnes. Dans l'échantillon étudié, 716 personnes ont été diagnostiquées diabétiques.
- À l'aide d'un intervalle de confiance au niveau de confiance 95 % , estimer la proportion de personnes diagnostiquées diabétiques dans la population française âgée de 20 à 79 ans.
- Quel doit être le nombre minimal de personnes à interroger si l'on veut obtenir un intervalle de confiance d'amplitude inférieure ou égale à 0,01 ?
Correction de l'exercice 1 (6 points)
Les trois parties sont indépendantes. Les résultats des probabilités seront arrondis à $10^{-3} $ près.
Partie 1
On estime qu'en 2013 la population mondiale est composée de 4,6 milliards de personnes âgées de 20 à 79 ans et que 46,1 % des personnes âgées de 20 à 79 ans vivent en zone rurale et 53,9 % en zone urbaine. En 2013, d'après la fédération internationale du diabète, 9,9 % de la population mondiale âgée de 20 à 79 ans vivant en zone urbaine est atteinte de diabète et 6,4 % de la population mondiale âgée de 20 à 79 ans vivant en zone rurale est atteinte de diabète. On interroge au hasard une personne âgée de 20 à 79 ans. On note :
- $R$ l'évènement : «la personne choisie habite en zone rurale » ,
- $D$ l'évènement: «la personne choisie est atteinte de diabète » .
- Traduire cette situation à l'aide d'un arbre de probabilité.
-
- Calculer la probabilité que la personne interrogée soit diabétique. D’après la formule des probabilités totales on a :
- La personne choisie est diabétique. Quelle est la probabilité qu'elle habite en zone rurale ? On veut calculer :
$\begin{align*} p(D)&=p(D\cap R)+p\left(D\cap \overline{R}\right) \\ &=0,461\times 0,064+0,539\times 0,099
&=0,082~865
&\approx 0,083
\end{align*}$
$\quad$
$\begin{align*} p_D(R)&=\dfrac{p(D \cap R)}{p(D)} \\ &\approx\dfrac{0,461 \times 0,064}{0,083} \\ &\approx 0,355
\end{align*}$
Remarque : On obtient environ $0,356$ quand on garde la valeur exacte trouvée à la question 2.a.

Partie 2
Une personne est dite en hypoglycémie si sa glycémie à jeun est inférieure à 60 mg.dL$^{-1}$ et elle est en hyperglycémie si sa glycémie à jeun est supérieure à 110 mg. dL$^{-1}$. La glycémie à jeun est considérée comme «normale » si elle est comprise entre 70 mg.dL$^{-1}$ et 110 mg.dL$^{-1}$. Les personnes ayant un taux de glycémie compris entre 60 et 70 mg.dL$^{-1}$ ne font pas l'objet d'un suivi particulier. On choisit au hasard un adulte dans cette population. Une étude a permis d'établir que la probabilité qu'il soit en hyperglycémie est 0,052 à $10^{-3}$ près. Dans la suite on admettra que cette probabilité est égale à $0,052$. On modélise la glycémie à jeun, exprimée en mg.dL$^{-1}$, d'un adulte d'une population donnée, par une variable aléatoire $X$ qui suit une loi normale d'espérance $\mu$ et d'écart-type $\sigma$. On donne ci-dessous la représentation graphique de la densité de probabilité de la variable aléatoire $X$.
- Quelle est la probabilité que la personne choisie ait une glycémie à jeun «normale» ? On veut calculer $P(70\leq X \leq 110)$.
- Déterminer la valeur de $\sigma$ arrondie au dixième. On note $Z=\dfrac{X-90}{\sigma}$.
- Dans cette question, on prend $\sigma = 12$. Calculer la probabilité que la personne choisie soit en hypoglycémie. La probabilité que la personne choisie soit en hypoglycémie est $P(X<60)$. À la calculatrice, pour la variable aléatoire $X$ qui suit la loi normale de paramètres $\mu=90$ et $\sigma=12$, on trouve $P(X < 60)\approx 0,006$. La probabilité, arrondie au millième, que la personne choisie soit en hypoglycémie est 0,006.
On sait que $P(X > 110) = 0,052$.
Or $\mu=90$ donc $P(X<70)=P(X>110)$.
Ainsi
$\begin{align*} P(70\leq X \leq 110) &=1-P(X<70)-P(X>110) \\ &=1-0,052-0,052 \\ &=0,896
\end{align*}$
Cette variable aléatoire suit la loi normale centrée réduite.
$\begin{align*} P(70\leq X \leq 110) =0,896 &\iff P(-20 \leq X-90 \leq 20) = 0,896\\ &\iff P\left(-\dfrac{20}{\sigma} \leq \dfrac{X-90}{\sigma} \leq \dfrac{20}{\sigma}\right) = 0,896 \\ &\iff P\left(-\dfrac{20}{\sigma} \leq Z \leq \dfrac{20}{\sigma}\right) = 0,896 \\ &\iff 2P\left(Z \leq \dfrac{20}{\sigma}\right)-1= 0,896 \\ &\iff 2P\left(Z \leq \dfrac{20}{\sigma}\right)= 1,896 \\ &\iff P\left(Z \leq \dfrac{20}{\sigma}\right)= 0,948
\end{align*}$
Par conséquent, en utilisant la fonction inverse loi normale de la calculatrice, on trouve $\dfrac{20}{\sigma} \approx 1,626$.
Donc $\sigma \approx \dfrac{20}{1,626}$ soit $\sigma \approx 12,3$
Partie 3
Afin d'estimer la proportion, pour l'année 2013, de personnes diagnostiquées diabétiques dans la population française âgée de 20 à 79 ans, on interroge au hasard 10000 personnes. Dans l'échantillon étudié, 716 personnes ont été diagnostiquées diabétiques.
- À l'aide d'un intervalle de confiance au niveau de confiance 95 % , estimer la proportion de personnes diagnostiquées diabétiques dans la population française âgée de 20 à 79 ans. La fréquence observée est $f=\dfrac{716}{10~000}=0,071~6$
- Quel doit être le nombre minimal de personnes à interroger si l'on veut obtenir un intervalle de confiance d'amplitude inférieure ou égale à 0,01 ? On appelle $n$ la taille de l’échantillon étudié pour un caractère dont la fréquence d’apparition est $f$.
Un intervalle de confiance au niveau de confiance $95\%$ est :
$\begin{align*} I_{10~000}&=\left[0,071~6-\dfrac{1}{\sqrt{10~000}};0,071~6+\dfrac{1}{\sqrt{10~000}} \right] \\ &=[0,061~6;0,0816]
\end{align*}$
L’amplitude de l’intervalle de confiance est alors :
$\begin{align*} A&=f+\dfrac{1}{\sqrt{n}}-\left(f-\dfrac{1}{\sqrt{n}}\right) \\ &=\dfrac{2}{\sqrt{n}}
\end{align*}$
On veut donc que :
$\begin{align*} \dfrac{2}{\sqrt{n}} \leq 0,01 &\iff \sqrt{n}\geq \dfrac{2}{0,01} \\ &\iff \sqrt{n} \geq 200 \\ &\iff n\geq 40~000
\end{align*}$
Il faut donc interroger au moins $40~000$ personnes.
Exercice 2 3 points
On considère les nombres complexes $z_n$ définis pour tout entier $n \geqslant 0$ par la donnée de $z_0$, où $z_0$ est différent de 0 et de 1, et la relation de récurrence: \[z_{n+1} = 1- \dfrac{1}{z_n}.\]
-
- Dans cette question, on suppose que $z_0 = 2$. Déterminer les nombres $z_1$, $z_2$, $z_3$, $z_4$, $z_5$ et $z_6$
- Dans cette question, on suppose que $z_0 = \text{i}$. Déterminer la forme algébrique des nombres complexes $z_1$, $z_2$, $z_3$, $z_4$, $z_5$ et $z_6$.
- Dans cette question on revient au cas général où $z_0$ est un complexe donné. Que peut-on conjecturer pour les valeurs prises par $z_{3n}$ selon les valeurs de l'entier naturel $n$ ? Prouver cette conjecture.
- Déterminer $z_{ 2016 }$ dans le cas où $z_0 = 1 + \text{i}$.
- Existe-t-il des valeurs de $z_0$ tel que $z_0 = z_1$ ? Que peut-on dire de la suite $\left(z_n\right)$ dans ce cas ?
Correction de l'exercice 2 (3 points)
On considère les nombres complexes $z_n$ définis pour tout entier $n \geqslant 0$ par la donnée de $z_0$, où $z_0$ est différent de 0 et de 1, et la relation de récurrence: \[z_{n+1} = 1- \dfrac{1}{z_n}.\]
-
- Dans cette question, on suppose que $z_0 = 2$. Déterminer les nombres $z_1$, $z_2$, $z_3$, $z_4$, $z_5$ et $z_6$ Si $z_0=2$ alors $z_1 = 1-\dfrac{1}{2} = \dfrac{1}{2}$
- Dans cette question, on suppose que $z_0 = \text{i}$. Déterminer la forme algébrique des nombres complexes $z_1$, $z_2$, $z_3$, $z_4$, $z_5$ et $z_6$. Si $z_0=\text{i}$ alors $z_1=1-\dfrac{1}{\text{i}}=1+\text{i}$
- Dans cette question on revient au cas général où $z_0$ est un complexe donné. Que peut-on conjecturer pour les valeurs prises par $z_{3n}$ selon les valeurs de l'entier naturel $n$ ? Prouver cette conjecture. On peut conjecturer que, pour tout entier naturel $n$, on a $z_{3n}=z_0$
$z_2=1-\dfrac{1}{\dfrac{1}{2}}=-1$
$z_3=1-\dfrac{1}{-1}=2$
$z_4=\dfrac{1}{2}$
$z_5=-1$
$z_6=2$
$\quad$
$z_2=1-\dfrac{1}{1+\text{i}} = \dfrac{1}{2}+\dfrac{\text{i}}{2}$
$z_3=1-\dfrac{1}{\dfrac{1}{2}+\dfrac{\text{i}}{2}}=\text{i}$
$z_4=1+\text{i}$
$z_5=\dfrac{1}{2}+\dfrac{\text{i}}{2}$
$z_6=\text{i}$
$\quad$
Initialisation : Si $n=0$ alors $z_{3n}=z_{3\times 0}=z_0$.
La propriété est vraie au rang $n$.
$\quad$
Hérédité : Supposons la propriété vraie au rang $n$ : $z_{3n}=z_0$.
$z_{3n+1}=1-\dfrac{1}{z_0}=\dfrac{z_0-1}{z_0}$
$z_{3n+2}=1-\dfrac{1}{\dfrac{z_0-1}{z_0}} = 1-\dfrac{z_0}{z_0-1}=\dfrac{-1}{z_0-1}$
$z_{3n+3}=1-\dfrac{1}{\dfrac{-1}{z_0-1}} = 1+z_0-1=z_0$
Par conséquent $z_{3(n+1)}=z_0$.
La propriété est vraie au rang $n+1$
$\quad$
Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
Par conséquent, pour tout entier naturel $n$, on a $z_{3n}=z_0$.
$\quad$ - Déterminer $z_{ 2016 }$ dans le cas où $z_0 = 1 + \text{i}$. $2016=3\times 672$ donc $z_{2016}=z_0=1+\text{i}$.
- Existe-t-il des valeurs de $z_0$ tel que $z_0 = z_1$ ? Que peut-on dire de la suite $\left(z_n\right)$ dans ce cas ? On cherche la valeur de $z_0$ telle que :
$\quad$
$\begin{align*} z_0=1-\dfrac{1}{z_0} &\iff \dfrac{z_0^2-z_0+1}{z_0} = 0\\ &\iff z_0^2-z_0+1=0 \text{ et } z_0\neq 0
\end{align*}$
$\Delta = -3 <0$
Il y a donc deux solutions complexes : $\dfrac{1-\text{i}\sqrt{3}}{2}$ et $\dfrac{1+\text{i}\sqrt{3}}{2}$.
Par conséquent si $z_0 \in \left\{\dfrac{1-\text{i}\sqrt{3}}{2};\dfrac{1+\text{i}\sqrt{3}}{2}\right\}$ alors $z_0=z_1$.
La suite $\left(z_n\right)$ est alors stationnaire.
Exercice 3 5 points
On dispose d'un dé équilibré à 6 faces numérotées de 1 à 6 et de 2 pièces A et B ayant chacune un côté pile et un côté face. Un jeu consiste à lancer une ou plusieurs fois le dé. Après chaque lancer de dé, si l'on obtient 1 ou 2, alors on retourne la pièce A, si l'on obtient 3 ou 4, alors on retourne la pièce B et si l'on obtient 5 ou 6, alors on ne retourne aucune des deux pièces. Au début du jeu, les 2 pièces sont du côté face.
- Dans l'algorithme ci-dessous, 0 code le côté face d'une pièce et 1 code le côté pile. Si $a$ code le côté de la pièce A à un instant donné, alors $1 - a$ code le côté de la pièce A après l'avoir retournée. $$\begin{array}{|ll|}\hline \text{Variables :} & a, b, d, s \text{sont des entiers}\\ & i, n \text{sont des entiers supérieurs ou égaux à } 1\\ \text{Initialisation :}& a \text{ prend la valeur } 0\\ & b \text{ prend la valeur } 0\\ &\text{Saisir } n\\ \text{Traitement :} & \text{Pour } i \text{ allant de 1 à } n \text{ faire }\\ &\begin{array}{|l} d \text{ prend la valeur d'un entier aléatoire compris } \\ \text{entre 1 et 6 }\\ \text{Si } d \leqslant 2\\ \hspace{0.5cm} \begin{array}{|l} \text{alors } a \text{ prend la valeur } 1 - a\\ \text{sinon Si } d \leqslant 4\\ \hspace{1.5cm}| \text{alors } b \text{ prend la valeur } 1 - b\\ \hspace{1cm}\text{FinSi }\\ \end{array}\\ \text{FinSi}\\ s \text{ prend la valeur } a + b\\ \end{array}\\ &\text{ FinPour }\\ \text{Sortie :}&\text{ Afficher } s\\ \hline \end{array}$$
- On exécute cet algorithme en saisissant $n = 3$ et en supposant que les valeurs aléatoires générées successivement pour $d$ sont 1 ; 6 et 4. Recopier et compléter le tableau donné ci-dessous contenant l'état des variables au cours de l'exécution de l'algorithme :
$$\begin{array}{|l|c|c|c|c|c|} \hline \text{variables}&i&d&a&b&s\\ \hline \text{initialisation}&\text{X}&\text{X}& & &\text{X}\\ \hline 1^{ er}\text{ passage boucle Pour}&& & & & \\ \hline 2^{ e}\text{ passage boucle Pour}& & & & & \\ \hline 3^{ e}\text{ passage boucle Pour}& && & & \\ \hline \end{array}$$ - Cet algorithme permet-il de décider si à la fin les deux pièces sont du côté pile ?
- On exécute cet algorithme en saisissant $n = 3$ et en supposant que les valeurs aléatoires générées successivement pour $d$ sont 1 ; 6 et 4. Recopier et compléter le tableau donné ci-dessous contenant l'état des variables au cours de l'exécution de l'algorithme :
- Pour tout entier naturel $n$, on note :
$\bullet~~$ $X_n$ l'évènement : « À l'issue de $n$ lancers de dés, les deux pièces sont du côté face»
$\bullet~~$ $Y_n$ l'évènement : « À l'issue de $n$ lancers de dés, une pièce est du côté pile et l'autre est du côté face»
$\bullet~~$ $Z_n$ l'évènement : « À l'issue de $n$ lancers de dés, les deux pièces sont du côté pile».
De plus on note, $x_n = P\left(X_n\right)$ ; $y_n = P\left(Y_n\right)$ et $z_n = P\left(Z_n\right)$ les probabilités respectives des évènements $X_n$, $Y_n$ et $Z_n$.- Donner les probabilités $x_0$ , $y_0$ et $z_0$ respectives qu'au début du jeu il y ait 0, 1 ou 2 pièces du côté pile.
- Justifier que $P_{X_n}\left(X_{n+1}\right) = \dfrac{1}{3}$.
- Recopier l'arbre ci-dessous et compléter les probabilités sur ses branches, certaines pouvant être nulles :
- Pour tout entier naturel $n$, exprimer $z_n$ en fonction de $x_n$ et $y_n$.
- En déduire que, pour tout entier naturel $n$, $y_{n+1} = - \dfrac{1}{3}y_n + \dfrac{2}{3}$.
- On pose, pour tout entier naturel $n$, $b_n = y_n - \dfrac{1}{2}$. Montrer que la suite $\left(b_n\right)$ est géométrique. En déduire que, pour tout entier naturel $n$, $y_n = \dfrac{1}{2} - \dfrac{1}{2}\times \left(- \dfrac{1}{3}\right)^n$.
- Calculer $\displaystyle\lim_{n \to + \infty} y_n$. Interpréter le résultat.
Correction de l'exercice 3 (5 points)
On dispose d'un dé équilibré à 6 faces numérotées de 1 à 6 et de 2 pièces A et B ayant chacune un côté pile et un côté face. Un jeu consiste à lancer une ou plusieurs fois le dé. Après chaque lancer de dé, si l'on obtient 1 ou 2, alors on retourne la pièce A, si l'on obtient 3 ou 4, alors on retourne la pièce B et si l'on obtient 5 ou 6, alors on ne retourne aucune des deux pièces. Au début du jeu, les 2 pièces sont du côté face.
- Dans l'algorithme ci-dessous, 0 code le côté face d'une pièce et 1 code le côté pile. Si $a$ code le côté de la pièce A à un instant donné, alors $1 - a$ code le côté de la pièce A après l'avoir retournée. $$\begin{array}{|ll|}\hline \text{Variables :} & a, b, d, s \text{sont des entiers}\\ & i, n \text{sont des entiers supérieurs ou égaux à } 1\\ \text{Initialisation :}& a \text{ prend la valeur } 0\\ & b \text{ prend la valeur } 0\\ &\text{Saisir } n\\ \text{Traitement :} & \text{Pour } i \text{ allant de 1 à } n \text{ faire }\\ &\begin{array}{|l} d \text{ prend la valeur d'un entier aléatoire compris } \\ \text{entre 1 et 6 }\\ \text{Si } d \leqslant 2\\ \hspace{0.5cm} \begin{array}{|l} \text{alors } a \text{ prend la valeur } 1 - a\\ \text{sinon Si } d \leqslant 4\\ \hspace{1.5cm}| \text{alors } b \text{ prend la valeur } 1 - b\\ \hspace{1cm}\text{FinSi }\\ \end{array}\\ \text{FinSi}\\ s \text{ prend la valeur } a + b\\ \end{array}\\ &\text{ FinPour }\\ \text{Sortie :}&\text{ Afficher } s\\ \hline \end{array}$$
- On exécute cet algorithme en saisissant $n = 3$ et en supposant que les valeurs aléatoires générées successivement pour $d$ sont 1 ; 6 et 4. Recopier et compléter le tableau donné ci-dessous contenant l'état des variables au cours de l'exécution de l'algorithme : $$\begin{array}{|l|c|c|c|c|c|} \hline \text{variables}&i&d&a&b&s\\ \hline \text{initialisation}&\text{X}&\text{X}& & &\text{X}\\ \hline 1^{ er}\text{ passage boucle Pour}&& & & & \\ \hline 2^{ e}\text{ passage boucle Pour}& & & & & \\ \hline 3^{ e}\text{ passage boucle Pour}& && & & \\ \hline \end{array}$$ $$\begin{array}{|l|c|c|c|c|c|} \hline \text{variables}&i&d&a&b&s\\ \hline \text{initialisation}&\text{X}&\text{X}&0&0&\text{X}\\ \hline 1^{ er}\text{ passage boucle Pour}&1&1&1&0&1\\ \hline 2^{ e}\text{ passage boucle Pour}&2&6&1&1&2\\ \hline 3^{ e}\text{ passage boucle Pour}&3&4&1&0&1\\ \hline \end{array}$$
- Cet algorithme permet-il de décider si à la fin les deux pièces sont du côté pile ? A chaque étape la variable $s$ détermine le nombre de pièces se trouvant du côté pile.
Cet algorithme permet donc bien de décider si à la fin les deux pièces sont du côté pile. - Pour tout entier naturel $n$, on note :
$\bullet~~$ $X_n$ l'évènement : « À l'issue de $n$ lancers de dés, les deux pièces sont du côté face»
$\bullet~~$ $Y_n$ l'évènement : « À l'issue de $n$ lancers de dés, une pièce est du côté pile et l'autre est du côté face»
$\bullet~~$ $Z_n$ l'évènement : « À l'issue de $n$ lancers de dés, les deux pièces sont du côté pile».
De plus on note, $x_n = P\left(X_n\right)$ ; $y_n = P\left(Y_n\right)$ et $z_n = P\left(Z_n\right)$ les probabilités respectives des évènements $X_n$, $Y_n$ et $Z_n$.- Donner les probabilités $x_0$ , $y_0$ et $z_0$ respectives qu'au début du jeu il y ait 0, 1 ou 2 pièces du côté pile. $P\left(X_0\right)=1$, $P\left(Y_0\right)=0$ et $P\left(Z_0\right)=0$
- Justifier que $P_{X_n}\left(X_{n+1}\right) = \dfrac{1}{3}$. On appelle $D$ la variable indiquant la face du dé obtenue.
- Recopier l'arbre ci-dessous et compléter les probabilités sur ses branches, certaines pouvant être nulles :
- Pour tout entier naturel $n$, exprimer $z_n$ en fonction de $x_n$ et $y_n$. Pour tout entier naturel $n$, on a $x_n+y_n+z_n=1$ donc $z_n=1-x_n-y_n$.
- En déduire que, pour tout entier naturel $n$, $y_{n+1} = - \dfrac{1}{3}y_n + \dfrac{2}{3}$. D’après la formule des probabilité totale on a :
- On pose, pour tout entier naturel $n$, $b_n = y_n - \dfrac{1}{2}$. Montrer que la suite $\left(b_n\right)$ est géométrique. En déduire que, pour tout entier naturel $n$, $y_n = \dfrac{1}{2} - \dfrac{1}{2}\times \left(- \dfrac{1}{3}\right)^n$. Pour tout entier naturel $n$ on a :
- Calculer $\displaystyle\lim_{n \to + \infty} y_n$. Interpréter le résultat. $-1<-\dfrac{1}{3}<1$ donc $\lim\limits_{n \to +\infty} \left(-\dfrac{1}{3}\right)^n=0$
$\quad$
$P_{X_n}\left(X_{n+1}\right)=P\left(D\in\left\{5;6\right\}\right) = \dfrac{2}{6}=\dfrac{1}{3}$.
Par conséquent $P\left(X_n\cap Y_{n+1}\right)=1-\dfrac{1}{3} = \dfrac{2}{3}$.
$\quad$
Si, au lancer $n$, une pièce est du côté pile et l’autre est du côté face, alors la seule possibilité de conserver un tel état, au lancer $n+1$, est d’obtenir $5$ ou $6$ avec le dé.
Donc $P\left(Y_n\cap Y_{n+1}\right)=\dfrac{1}{3}$.
De même $P\left(Y_n\cap X_{n+1}\right) =\dfrac{1}{3}$ et $P\left(Y_n\cap Z_{n+1}\right)=\dfrac{1}{3}$
$\quad$
Si, au lancer $n$, les deux pièces sont du côté pile alors, au lancer $n+1$, on ne peut avoir que deux possibilités : les deux pièces sont toujours du côté pile ou alors l’une est du côté pile et l’autre du côté face.
Pour garder les pièces du côté pile il faut obtenir $5$ ou $6$ avec le dé.
Donc $P\left(Z_n\cap Z_{n+1}\right)=\dfrac{1}{3}$ et $P\left(Z_n\cap Y_{n+1}\right)=\dfrac{2}{3}$
$\quad$
$\quad$
$\begin{align*} y_{n+1}&=P\left(Y_{n+1}\right) \\ &=P\left(X_n\cap Y_{n+1}\right)+P\left(Y_n\cap Y_{n+1}\right)+P\left(Z_n\cap Y_{n+1}\right) \\ &=\dfrac{2}{3}x_n+\dfrac{1}{3}y_n+\dfrac{2}{3}z_n \\ &=\dfrac{2}{3}x_n+\dfrac{1}{3}y_n+\dfrac{2}{3}\left(1-x_n-y_n\right) \\ &=-\dfrac{1}{3}y_n+\dfrac{2}{3}
\end{align*}$
$\begin{align*} b_{n+1}&=y_{n+1}-\dfrac{1}{2} \\ &=-\dfrac{1}{3}y_n+\dfrac{2}{3}-\dfrac{1}{2} \\ &=-\dfrac{1}{3}y_n+\dfrac{1}{6} \\ &=-\dfrac{1}{3}\left(y_n-\dfrac{1}{2}\right)
\end{align*}$
La suite $\left(b_n\right)$ est donc géométrique de raison $-\dfrac{1}{3}$ et de premier terme $b_0=0-\dfrac{1}{2}=-\dfrac{1}{2}$
Par conséquent $b_n=-\dfrac{1}{2}\times \left(-\dfrac{1}{3}\right)^n$
Et $y_n=b_n+\dfrac{1}{2}=\dfrac{1}{2}-\dfrac{1}{2}\times \left(-\dfrac{1}{3}\right)^n$
$\quad$
Ainsi $\lim\limits_{n \to +\infty} y_n=\dfrac{1}{2}$.
$\quad$
Cela signifie donc, qu’au bout d’un grand nombre de lancers, la probabilité d’obtenir une pièce du côté pile et une du côté face est de $50\%$.
$\quad$
Exercice 4 5 points
Un hélicoptère est en vol stationnaire au-dessus d'une plaine. Un passager lâche verticalement un colis muni d'un parachute.
Partie 1
Soit $v_1$ la fonction définie sur $[0~;~+\infty[$ par : \[v_1(t) = 5 \times \dfrac{\text{e}^{0,3t} - 1}{\text{e}^{0,3t} + 1}.\]
- Déterminer le sens de variation de la fonction $v_1$.
- On suppose, dans cette question, que le parachute fonctionne correctement. On admet que $t$ secondes après qu'il a été lâché, la vitesse du colis (exprimée en m.s$^{-1}$) est égale, avant d'atteindre le sol, à $v_1(t)$. On considère que le colis arrive en bon état sur le sol si sa vitesse à l'arrivée n'excède pas 6 m.s$^{-1}$. Le colis risque-t-il d'être endommagé lorsque le parachute s'ouvre correctement ? Justifier.
Partie 2
On suppose, dans cette partie, que le parachute ne s'ouvre pas. On admet que, dans ce cas, avant que le colis atteigne le sol, sa vitesse (exprimée en m.s$^{-1}$), $t$ secondes après avoir été lâché par le passager, est donnée par : \[v_2(t) = 32,7 \left(1 - \text{e}^{- 0,3t}\right).\]
- Quelle est la vitesse, exprimée en m.s$^{-1}$, atteinte par le colis au bout de 10 secondes ? Arrondir à 0,1 m.s$^{-1}$.
- Résoudre l'équation $v_2(t) = 30$ m.s$^{-1}$. Donner une interprétation concrète de la solution de cette équation dans le cadre de cet exercice.
- On sait que la chute du colis dure 20 secondes. On admet que la distance, en mètres, qui sépare l'hélicoptère du colis, $T$ secondes après avoir été lâché par le passager, est donnée par: \[d(T) = \displaystyle\int_0^T v_2(t)\:\text{d}t.\]
- Montrer que, pour tout réel $T$ de l'intervalle [0 ; 20], $d(T) = 109\left(\text{e}^{- 0,3 T} + 0,3 T - 1\right)$.
- Déterminer une valeur approchée à 1 m près de la distance parcourue par le colis lorsqu'il atteint le sol.
- Déterminer un encadrement d'amplitude $0,1$~s du temps mis par le colis pour atteindre le sol si on l'avait lâché d'une hauteur de $700$ mètres.
Correction de l'exercice 4 5 points
Un hélicoptère est en vol stationnaire au-dessus d'une plaine. Un passager lâche verticalement un colis muni d'un parachute.
Partie 1
Soit $v_1$ la fonction définie sur $[0~;~+\infty[$ par : \[v_1(t) = 5 \times \dfrac{\text{e}^{0,3t} - 1}{\text{e}^{0,3t} + 1}.\]
- Déterminer le sens de variation de la fonction $v_1$. La fonction $v_1$ est dérivable sur $[0;+\infty[$ en tant que quotient de fonctions dérivables sur cet intervalle dont le dénominateur ne s’annule pas.
- On suppose, dans cette question, que le parachute fonctionne correctement. On admet que $t$ secondes après qu'il a été lâché, la vitesse du colis (exprimée en m.s$^{-1}$) est égale, avant d'atteindre le sol, à $v_1(t)$. On considère que le colis arrive en bon état sur le sol si sa vitesse à l'arrivée n'excède pas 6 m.s$^{-1}$. Le colis risque-t-il d'être endommagé lorsque le parachute s'ouvre correctement ? Justifier. On va donc déterminer $\lim\limits_{t \to +\infty} 5 \times \dfrac{\text{e}^{0,3t}-1}{\text{e}^{0,3t}+1}$.
$\begin{align*} v_1′(t)&=5\times \dfrac{0,3\text{e}^{0,3t}\left(e^{0,3t}+1\right)-0,3\text{e}^{0,3t}\left(\text{e}^{0,3t}-1\right)}{\left(\text{e}^{0,3t}+1\right)^2} \\ &=5\times 0,3 \times \dfrac{\text{e}^{0,6t}+\text{e}^{0,3t}-\text{e}^{0,6t}+\text{e}^{0,3t}}{\left(\text{e}^{0,3t}+1\right)^2}\\ &=1,5 \times \dfrac{2\times \text{e}^{0,3t}}{\left(\text{e}^{0,3t}+1\right)^2} \\ &=3\times \dfrac{\text{e}^{0,3t}}{\left(\text{e}^{0,3t}+1\right)^2} \\ &>0
\end{align*}$
La fonction exponentielle étant effectivement strictement positive sur $\mathbb R$ et donc sur $[0;+\infty[$.
$\quad$
Par conséquent la fonction $v_1$ est strictement croissante sur $[0;+\infty[$.
$\quad$
$\dfrac{\text{e}^{0,3t}-1}{\text{e}^{0,3t}+1} = \dfrac{\text{e}^{0,3t}\left(1-\text{e}^{-0,3t}\right)}{\text{e}^{0,3t}\left(1+\text{e}^{-0,3t}\right)}=\dfrac{1-\text{e}^{-0,3t}}{1+\text{e}^{-0,3t}}$
Or $\lim\limits_{t \to +\infty} \text{e}^{-0,3t}=0$
Donc $\lim\limits_{t \to +\infty} \dfrac{\text{e}^{0,3t}-1}{\text{e}^{0,3t}+1} = 5$ et $\lim\limits_{t \to +\infty} v_1(t)=5$.
La fonction $v_1$ est strictement croissante et sa limite en $+\infty$ est $5$.
Par conséquent, pour tout $t \geq 0$, on a $v_1(t)\leq 5$.
Le colis ne sera donc pas endommagé lorsque le colis s’ouvre correctement.
$\quad$
Partie 2
On suppose, dans cette partie, que le parachute ne s'ouvre pas. On admet que, dans ce cas, avant que le colis atteigne le sol, sa vitesse (exprimée en m.s$^{-1}$), $t$ secondes après avoir été lâché par le passager, est donnée par : \[v_2(t) = 32,7 \left(1 - \text{e}^{- 0,3t}\right).\]
- Quelle est la vitesse, exprimée en m.s$^{-1}$, atteinte par le colis au bout de 10 secondes ? Arrondir à 0,1 m.s$^{-1}$. $v_2(10)=32,7\left(1-\text{e}^{-3}\right) \approx 31,1$ m.s$^{-1}$.
- Résoudre l'équation $v_2(t) = 30$ m.s$^{-1}$. Donner une interprétation concrète de la solution de cette équation dans le cadre de cet exercice. $\quad$
- On sait que la chute du colis dure 20 secondes. On admet que la distance, en mètres, qui sépare l'hélicoptère du colis, $T$ secondes après avoir été lâché par le passager, est donnée par: \[d(T) = \displaystyle\int_0^T v_2(t)\:\text{d}t.\]
- Montrer que, pour tout réel $T$ de l'intervalle [0 ; 20], $d(T) = 109\left(\text{e}^{- 0,3 T} + 0,3 T - 1\right)$.
- Déterminer une valeur approchée à 1 m près de la distance parcourue par le colis lorsqu'il atteint le sol. On veut calculer $d(20) = 109\left(\text{e}^{-6}+6-1\right) = 109\left(\text{e}^{-6}+5\right)\approx 545$ m.
$\begin{align*} d(T)&=\int_0^T v_2(t)\text{d}t \\ &=\int_0^T \left(32,7-32,7\text{e}^{-0,3t}\right)\text{d}t \\ &=\left[32,7t-\dfrac{32,7}{-0,3}\text{e}^{-0,3t}\right]_0^T \\ &=32,7T+109\text{e}^{-0,3T}-109 \\ &=109\left(\text{e}^{-0,3T}+0,3T-1\right)
\end{align*}$
$\quad$
Le colis a donc parcouru environ $545$ mètres avant d’atteindre le sol.
$\quad$ - Déterminer un encadrement d'amplitude $0,1$~s du temps mis par le colis pour atteindre le sol si on l'avait lâché d'une hauteur de $700$ mètres. On veut résoudre l’équation $d(T)=700$
$\quad$
$\begin{align*} v_2(t)=30 &\iff 32,7\left(1-\text{e}^{-0,3t}\right) = 30 \\ &\iff 1-\text{e}^{-0,3t}=\dfrac{30}{32,7} \\ &\iff -\text{e}^{-0,3t}=\dfrac{30}{32,7}-1\\ &\iff \text{e}^{-0,3t}=\dfrac{2,7}{32,7}\\ &\iff -0,3t=\ln \dfrac{2,7}{32,7}\\ &\iff t=\dfrac{\ln \dfrac{2,7}{32,7}}{-0,3}
\end{align*}$
Par conséquent $t\approx 8,3$ s.
Cela signifie qu’au bout de $8,3$ secondes environ le colis a atteint la vitesse de $30$ m.s$^{-1}$.
$\quad$
Soit $109\left(\text{e}^{-0,3T}+0,3T-1\right)=700$
A l’aide de la fonction table de la calculatrice on trouve $\approx 24,7 < T <24,8$.
$\quad$
Spécialité 5 points
On dispose d'un dé équilibré à 6 faces numérotées de 1 à 6 et de 3 pièces A, B et C ayant chacune un côté pile et un côté face. Un jeu consiste à lancer une ou plusieurs fois le dé. Après chaque lancer de dé, si l'on obtient 1 ou 2, alors on retourne la pièce A, si l'on obtient 3 ou 4, alors on retourne la pièce B et si l'on obtient 5 ou 6, alors on retourne la pièce C. Au début du jeu, les 3 pièces sont toutes du côté face.
- Dans l'algorithme ci-dessous, 0 code le côté face et 1 code le côté pile. Si $a$ code un côté de la pièce A, alors $1 - a$ code l'autre côté de la pièce A. $$\begin{array}{|ll|}\hline \text{Variables :} &a, b, c, d, s\text{ sont des entiers naturels}\\ &i, n \text{ sont des entiers supérieurs ou égaux à } 1\\ \text{Initialisation :}&a \text{ prend la valeur }0\\ &b\text{ prend la valeur }0\\ &c \text{ prend la valeur }0\\ &\text{Saisir }n\\ \text{Traitement :} & \text{Pour }i \text{ allant de 1 à } n \text{ faire }\\ &\begin{array}{|l} d \text{ prend la valeur d'un entier aléatoire compris}\\ \text{entre 1 et }6\\ \text{ Si } d \leqslant 2\\ \hspace{0.5cm} \begin{array}{|l} \text{ alors } a \text{ prend la valeur } 1 - a\\ \text{ sinon Si } d \leqslant 4\\ \hspace{1.5cm}\begin{array}{|l} \text{ alors } b \text{ prend la valeur } 1 - b\\ \text{ sinon } c \text{ prend la valeur } 1 - c \end{array}\\ \hspace{1cm}\text{ FinSi }\\ \end{array}\\ \text{ FinSi }\\ s \text{ prend la valeur } a + b + c\\ \end{array}\\ &\text{ FinPour }\\ \text{Sortie :}&\text{ Afficher }s\\ \hline \end{array}$$
- On exécute cet algorithme en saisissant $n = 3$ et en supposant que les valeurs aléatoires générées successivement pour $d$ sont 1 ; 4 et 2. Recopier et compléter le tableau donné ci-dessous contenant l'état des variables au cours de l'exécution de l'algorithme :
$$\begin{array}{|l|c|c|c|c|c|c|} \hline \text{variables}&i&d&a&b&c&s\\ \hline \text{initialisation}&\text{X}&\text{X}& & & &\text{X}\\ \hline 1^{er}\text{ passage boucle Pour}& & & & & & \\ \hline 2^{ e}\text{ passage boucle Pour}& & & & & & \\ \hline 3^{ e}\text{ passage boucle Pour}& &&&&&\\ \hline \end{array}$$ - Cet algorithme permet-il de savoir si, après une exécution de $n$ tirages, les trois pièces sont du côté pile ?
- On exécute cet algorithme en saisissant $n = 3$ et en supposant que les valeurs aléatoires générées successivement pour $d$ sont 1 ; 4 et 2. Recopier et compléter le tableau donné ci-dessous contenant l'état des variables au cours de l'exécution de l'algorithme :
- Pour tout entier naturel $n$, on note :
$\bullet~~$ $X_n$ l'évènement: « À l'issue de $n$ lancers de dés, les trois pièces sont du côté face »
$\bullet~~$ $Y_n$ l'évènement: « À l'issue de $n$ lancers de dés, une seule pièce est du côté pile et les autres sont du côté face»
$\bullet~~$ $Z_n$ l'évènement: « À l'issue de $n$ lancers de dés, exactement deux pièces sont du côté pile et l'autre est du côté face»
$\bullet~~$ $T_n$ l'évènement: « À l'issue de $n$ lancers de dés, les trois pièces sont du côté pile ».
De plus on note, $x_n = p\left(X_n\right)$ ; $y_n = p\left(Y_n\right)$ ; $z_n = p\left(Z_n\right)$ et $t_n = p\left(T_n\right)$ les probabilités respectives des évènements $X_n$, $Y_n$, $Z_n$ et $T_n$.- Donner les probabilités $x_0$ ,$y_0$, $z_0$ et $t_0$ respectives qu'au début du jeu il y ait 0, 1, 2 ou 3 pièces du côté pile.
- Recopier l'arbre ci-dessous et compléter les probabilités sur ses branches :
- Pour tout entier naturel $n$, on note $U_n$ la matrice ligne $\left(x_n y_n z_n t_n\right)$.
- Donner la matrice $U_0$.
- À l'aide de l'arbre précédemment rempli, déterminer la matrice carrée $M$ telle que, pour tout entier naturel $n$, $U_{n+1} = U_n \times M$.
- Démontrer que, pour tout entier naturel $n$, $U_n = U_0 \times M^n$.
- On admet que, pour tout entier $n \geqslant 1$,
$$\left\lbrace \begin{array}{l} x_n = \dfrac{(- 1)^n + 3 \times \left(- \frac{1}{3}\right)^n + 3\times \left(\frac{1}{3}\right)^n + 1}{8}~\\ y_n = \dfrac{- 3 \times \left(- \frac{1}{3}\right)^n + 3 \times \left(\frac{1}{3}\right)^n - (- 1)^n \times 3 + 3}{8}\\ z_n = \dfrac{- 3 \times \left(- \frac{1}{3}\right)^n - 3 \times \left(\frac{1}{3}\right)^n + (- 1)^n\times 3 + 3}{8}\\ t_n = \dfrac{- (- 1)^n + 3 \times \left(- \frac{1}{3}\right)^n - 3\times \left(\frac{1}{3}\right)^n + 1}{8} \end{array} \right. $$- Calculer la probabilité, arrondie à $10^{-3}$ près, qu'au bout de 5 lancers de dés, une seule des trois pièces soit du côté pile.
- Préciser si les affirmations suivantes sont vraies ou fausses. Une réponse non justifiée n'est pas prise en compte.
$\bullet~~$ Première affirmation : « À l'issue d'un nombre pair de lancers de dés, les pièces peuvent être toutes les trois du côté pile ».
$\bullet~~$ Deuxième affirmation: « Au cours du jeu, la probabilité que les pièces soient toutes les trois du côté pile peut être supérieure ou égale à $\dfrac{1}{4}$ ».
$\bullet~~$ Troisième affirmation: « Au cours du jeu, la probabilité que les pièces soient toutes les trois du côté pile peut être supérieure ou égale à $0,249$ ».
Correction de l'exercice de Spécialité 5 points
On dispose d'un dé équilibré à 6 faces numérotées de 1 à 6 et de 3 pièces A, B et C ayant chacune un côté pile et un côté face. Un jeu consiste à lancer une ou plusieurs fois le dé. Après chaque lancer de dé, si l'on obtient 1 ou 2, alors on retourne la pièce A, si l'on obtient 3 ou 4, alors on retourne la pièce B et si l'on obtient 5 ou 6, alors on retourne la pièce C. Au début du jeu, les 3 pièces sont toutes du côté face.
- Dans l'algorithme ci-dessous, 0 code le côté face et 1 code le côté pile. Si $a$ code un côté de la pièce A, alors $1 - a$ code l'autre côté de la pièce A. $$\begin{array}{|ll|}\hline \text{Variables :} &a, b, c, d, s\text{ sont des entiers naturels}\\ &i, n \text{ sont des entiers supérieurs ou égaux à } 1\\ \text{Initialisation :}&a \text{ prend la valeur }0\\ &b\text{ prend la valeur }0\\ &c \text{ prend la valeur }0\\ &\text{Saisir }n\\ \text{Traitement :} & \text{Pour }i \text{ allant de 1 à } n \text{ faire }\\ &\begin{array}{|l} d \text{ prend la valeur d'un entier aléatoire compris}\\ \text{entre 1 et }6\\ \text{ Si } d \leqslant 2\\ \hspace{0.5cm} \begin{array}{|l} \text{ alors } a \text{ prend la valeur } 1 - a\\ \text{ sinon Si } d \leqslant 4\\ \hspace{1.5cm}\begin{array}{|l} \text{ alors } b \text{ prend la valeur } 1 - b\\ \text{ sinon } c \text{ prend la valeur } 1 - c \end{array}\\ \hspace{1cm}\text{ FinSi }\\ \end{array}\\ \text{ FinSi }\\ s \text{ prend la valeur } a + b + c\\ \end{array}\\ &\text{ FinPour }\\ \text{Sortie :}&\text{ Afficher }s\\ \hline \end{array}$$
- On exécute cet algorithme en saisissant $n = 3$ et en supposant que les valeurs aléatoires générées successivement pour $d$ sont 1 ; 4 et 2. Recopier et compléter le tableau donné ci-dessous contenant l'état des variables au cours de l'exécution de l'algorithme :
$$\begin{array}{|l|c|c|c|c|c|c|} \hline \text{variables}&i&d&a&b&c&s\\ \hline \text{initialisation}&\text{X}&\text{X}& & & &\text{X}\\ \hline 1^{er}\text{ passage boucle Pour}& & & & & & \\ \hline 2^{ e}\text{ passage boucle Pour}& & & & & & \\ \hline 3^{ e}\text{ passage boucle Pour}& &&&&&\\ \hline \end{array}$$ $$\begin{array}{|l|c|c|c|c|c|c|} \hline \text{variables}&i&d&a&b&c&s\\ \hline \text{initialisation}&\text{X}&\text{X}&0&0&0&\text{X}\\ \hline 1^{er}\text{ passage boucle Pour}&1&1&1&0&0&1\\ \hline 2^{ e}\text{ passage boucle Pour}&2&4&1&1&0&2\\ \hline 3^{ e}\text{ passage boucle Pour}&3&2&0&1&0&1\\ \hline \end{array}$$
- Cet algorithme permet-il de savoir si, après une exécution de $n$ tirages, les trois pièces sont du côté pile ? A chaque étape la variable $s$ détermine le nombre de pièces se trouvant du côté pile.
L’algorithme permet donc de dite si, après $n$ tirages, les trois pièces sont du côté pile.
$\quad$ - On exécute cet algorithme en saisissant $n = 3$ et en supposant que les valeurs aléatoires générées successivement pour $d$ sont 1 ; 4 et 2. Recopier et compléter le tableau donné ci-dessous contenant l'état des variables au cours de l'exécution de l'algorithme :
- Pour tout entier naturel $n$, on note :
$\bullet~~$ $X_n$ l'évènement: « À l'issue de $n$ lancers de dés, les trois pièces sont du côté face »
$\bullet~~$ $Y_n$ l'évènement: « À l'issue de $n$ lancers de dés, une seule pièce est du côté pile et les autres sont du côté face»
$\bullet~~$ $Z_n$ l'évènement: « À l'issue de $n$ lancers de dés, exactement deux pièces sont du côté pile et l'autre est du côté face»
$\bullet~~$ $T_n$ l'évènement: « À l'issue de $n$ lancers de dés, les trois pièces sont du côté pile ».
De plus on note, $x_n = p\left(X_n\right)$ ; $y_n = p\left(Y_n\right)$ ; $z_n = p\left(Z_n\right)$ et $t_n = p\left(T_n\right)$ les probabilités respectives des évènements $X_n$, $Y_n$, $Z_n$ et $T_n$.- Donner les probabilités $x_0$ ,$y_0$, $z_0$ et $t_0$ respectives qu'au début du jeu il y ait 0, 1, 2 ou 3 pièces du côté pile. Au début du jeu, toutes les pièces sont du côté face.
- Recopier l'arbre ci-dessous et compléter les probabilités sur ses branches :
Donc $p\left(X_0\right)=1$, $p\left(Y_0\right)=0$, $p\left(Z_0\right)=0$ et $p\left(T_0\right)=0$.
$\quad$
- Pour tout entier naturel $n$, on note $U_n$ la matrice ligne $\left(x_n y_n z_n t_n\right)$.
- Donner la matrice $U_0$. On a $U_0=\begin{pmatrix}1&0&0&0\end{pmatrix}$
- À l'aide de l'arbre précédemment rempli, déterminer la matrice carrée $M$ telle que, pour tout entier naturel $n$, $U_{n+1} = U_n \times M$. On a $M=\begin{pmatrix}0&\dfrac{1}{3}&0&0\\1&0&\dfrac{2}{3}&0\\0&\dfrac{2}{3}&\dfrac{1}{3}&1\\0&0&0&1 \end{pmatrix}$
$\quad$ - Démontrer que, pour tout entier naturel $n$, $U_n = U_0 \times M^n$. Montrons par récurrence que, pour tout entier naturel $n$ on a $U_{n+1}=U_0\times M^n$
- On admet que, pour tout entier $n \geqslant 1$,
$$\left\lbrace \begin{array}{l} x_n = \dfrac{(- 1)^n + 3 \times \left(- \frac{1}{3}\right)^n + 3\times \left(\frac{1}{3}\right)^n + 1}{8}~\\ y_n = \dfrac{- 3 \times \left(- \frac{1}{3}\right)^n + 3 \times \left(\frac{1}{3}\right)^n - (- 1)^n \times 3 + 3}{8}\\ z_n = \dfrac{- 3 \times \left(- \frac{1}{3}\right)^n - 3 \times \left(\frac{1}{3}\right)^n + (- 1)^n\times 3 + 3}{8}\\ t_n = \dfrac{- (- 1)^n + 3 \times \left(- \frac{1}{3}\right)^n - 3\times \left(\frac{1}{3}\right)^n + 1}{8} \end{array} \right. $$- Calculer la probabilité, arrondie à $10^{-3}$ près, qu'au bout de 5 lancers de dés, une seule des trois pièces soit du côté pile. On veut calculer $y_5=\dfrac{-3\times \left(-\dfrac{1}{3}\right)^5+3\times \left(\dfrac{1}{3}\right)^5-(-1)^5\times 3+3}{8}$
- Préciser si les affirmations suivantes sont vraies ou fausses. Une réponse non justifiée n'est pas prise en compte.
$\bullet~~$ Première affirmation : « À l'issue d'un nombre pair de lancers de dés, les pièces peuvent être toutes les trois du côté pile ».
$\bullet~~$ Deuxième affirmation: « Au cours du jeu, la probabilité que les pièces soient toutes les trois du côté pile peut être supérieure ou égale à $\dfrac{1}{4}$ ».
$\bullet~~$ Troisième affirmation: « Au cours du jeu, la probabilité que les pièces soient toutes les trois du côté pile peut être supérieure ou égale à $0,249$ ». Première affirmation : fausse
Soit $y_5 \approx 0,753$.
$\quad$
Si $n$ est pair alors $(-1)^n=1$ et $\left(-\dfrac{1}{3}\right)^n=\dfrac{1}{3^n}$
Donc $t_n=\dfrac{-1+\dfrac{3}{3^n}-\dfrac{3}{3^n}+1}{8}=0$
$\quad$
Deuxième affirmation : fausse
On a vu que si $n$ est pair alors $t_n=0$
Si $n$ est impair alors $(-1)^n=-1$ et $\left(-\dfrac{1}{3}\right)^n=-\dfrac{1}{3^n}$
Donc $t_n=\dfrac{1-\dfrac{3}{3^n}-\dfrac{3}{3^n}+1}{8}=\dfrac{1-\dfrac{1}{3^{n-1}}}{4}<4$ si $n\geq 1$
$\quad$
Troisième affirmation : vraie
$u_7\approx 0,249~66 >0,249 $
$\quad$
Initialisation : Si $n=0$ alors $U_0\times M^0=U_0\times I_4=U_0$ où $I_4$ est la matrice identité.
La propriété est donc vraie au rang $0$.
$\quad$
Hérédité : On suppose la propriété vraie au rang $n$ : $U_n=U_0\times M^n$
$\begin{align*} U_{n+1}&=U_n\times M \\ &=U_0\times M^n\times M \\ &=U_0\times M^{n+1}
\end{align*}$
La propriété est donc vraie au rang $n+1$.
$\quad$
Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
Donc pour tout entier naturel $n$ on a $U_n=U_0 \times M^n$.
$\quad$
- Vues: 29811