Baccalauréat STI 2D/STL spécialité SPCL Métropole--La Réunion 7 septembre 2015 - Correction Exercice 4

Page 8 sur 8: Correction Exercice 4

Exercice 4 5 points


Probabilités


Un sismologue déclare en janvier 2014 : "Le risque d'un séisme majeur le long de la faille de San Andreas, en Californie, dans les vingt prochaines années est supérieur à 70 % ".
On s'intéresse au temps, exprimé en années, écoulé entre deux séismes majeurs le long de cette faille en Californie. On admet que ce temps est une variable aléatoire $X$ qui suit une loi exponentielle de paramètre $\lambda$.
Document 1
La faille de San Andreas, en Californie : séismes majeurs de magnitude supérieure ou égale à 5. $$\begin{array}{|c|c|c|}\hline \text{Ville} & \text{Année} &\text{Magnitude}\\ \hline\hline \text{Comté d'Orange} & 1769 & 6\\ \hline \text{San Diego } &1800 & 6,5\\ \hline \text{San Francisco }&1808 &6\\ \hline \text{Fort Tejon } &1857 &8,3\\ \hline \text{Monts Santa Cruz}&1865 &6,5\\ \hline \text{Hayward } &1868 &6,9\\ \hline \text{San Francisco } &1906 &8,2\\ \hline \text{Santa Barbara } &1925 &6,3\\ \hline \text{Santa Barbara } &1927 &7,3\\ \hline \text{Long Beach } &1933 &6,3\\ \hline \text{Comté de Kern } &1952 &7,7\\ \hline \text{San Francisco } &1957 &5,3\\ \hline \text{San Fernando } &1971 &6,6\\ \hline \text{LomaPrieta } &1989 &7,1\\ \hline \text{Parkfield } &2004 &6,0\\ \hline \text{Los Angeles } &2008 &5,5\\ \hline \text{Mexicali } &2010 &7,2\\ \hline \text{Napa } &2014 &6,0\\ \hline \end{array} $$ Document 2

Rappels sur la loi exponentielle

  • $\lambda$ est un nombre réel strictement positif. Une variable aléatoire suit la loi exponentielle de paramètre $\lambda$  si sa densité de probabilité est définie sur $[0~;~+\infty[$ par $f(x) = \lambda\text{e}^{-\lambda x}$.
  • L'espérance d'une variable aléatoire $X$ qui suit la loi exponentielle de paramètre $\lambda$ est $E(X) = \dfrac{1}{\lambda}$. 

 

    1. Pour illustrer la situation un élève utilise un tableur. $$\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}\hline &A &B &C &D &E &F &G &H &I &J &K &L &M &N &O &P &Q &R &S &T\\ \hline 1 &\text{Année }&1769 &1800 &1808 &1857 &1865 &1868 &1906 &1925 &1927 &1933 &1952 &1957 &1971 &1989 &2004 &2008 &2010 &2014 & \text{Total}\\ \hline 2 & & &31 &8 &49 &8 &3 &38 &19 &2 &6 &19 &5 &14 &18 &15 &4 &2 &4 &245\\ \hline \end{array}\normalsize $$
      Proposer un titre pour la cellule A2 grisée.
    2. Le titre suggéré pour la cellule A2 est « Temps écoulé entre deux seismes majeurs »
    3. Quelle formule a saisi l'élève dans la cellule C2 afin de compléter ce tableau jusqu'à la colonne S par " recopie automatique vers la droite " ?

    4. La formule saisie dans la cellule C2 est : « = C1 - B1 »
    1. Calculer en années la moyenne m, arrondie à $10^{-2}$ près, du temps écoulé entre deux séismes majeurs le long de la faille de San Andreas en Californie.
    2. Il y a 17 périodes de temps écoulé d'où $$m=\dfrac{245}{17}\approx 14,41$$ La moyenne du temps écoulé entre deux séismes majeurs le long de la faille de San Andreas est de 14,41 années.

    3. Justifier qu'une approximation du paramètre $\lambda$ de la loi exponentielle suivie par la variable aléatoire $X$ est  0,0694 .
    4. L'espérance d'une variable aléatoire $X$ qui suit la loi exponentielle de paramètre $\lambda$ est $E⁡(X)=\dfrac{1}{\lambda}$ d'où $$\dfrac{1}{\lambda}=14,41\iff\lambda= \dfrac{1}{14,41}\approx 0,0694$$ Une approximation du paramètre $\lambda$ de la loi exponentielle suivie par la variable aléatoire X est 0,0694.

    1. Calculer $P(X \leqslant 20)$ à $10^{-2}$ près.
    2. $$\begin{array}{rl} P(X\leq 20)&=\displaystyle\int_0^{20} 0,0694 e^{-0,0694 t } \;\text{d}t \\ &= \left [ -e^{-0,0694 t }\right ]_0^{20}\\ & = \left [F(20)-F(0)\right] \\ & -e^{-0,0694 \times 20 } -(-e^{0})\\ &=1- e^{-1,388}\\ &\approx 0,75 \end{array}$$ $$P(X\leq 20) \approx 0,75$$

    3. L'affirmation du sismologue paraît -elle cohérente avec cette modélisation par une loi exponentielle?
    4. $P(X\leq 20) \approx 0,75$ donc l'affirmation du sismologue est cohérente avec cette modélisation.

  1. Le dernier séisme majeur a eu lieu en 2014 à Napa. Calculer la probabilité qu'il n'y ait pas d'autres séismes majeurs le long de la faille de San Andreas, en Californie, avant 2050. On arrondira à $10^{-2}$ près.
  2. $$\begin{array}{rl} P(X\leq 36)&= 1-P(X<36)\\ & =1- \displaystyle\int_0^{36} 0,0694 e^{-0,0694 t } \;\text{d}t \\ &= \left [ -e^{-0,0694 t }\right ]_0^{36}\\ & = 1- \left [F(36)-F(0)\right] \\ & -e^{-0,0694 \times 36 } -(-e^{0})\\ &= e^{-2,4984}\\ &\approx 0,08 \end{array}$$ La probabilité qu'il n'y ait pas d'autres séismes majeurs le long de la faille de San Andreas avant 2050 est environ 0,08.

    1. Résoudre l'équation $1 - \text{e}^{-0,0694t} = 0,95$.
    2. $$\begin{array}{rl} 1-e^{-0,0694 t } =0,95&\iff e^{-0,0694 t } = 0,05 \\ &\iff \ln \left (e^{-0,0694 t }\right )=\ln(0,05)\\ & \iff -0,0694 t= \ln(0,05)\\ & \iff t = -\dfrac{\ln(0,05)}{0,0694}\\ &t\approx 43,166 \text{ soit } 43,17 \text{ au centième près. } \end{array}$$ L'équation $1 - \text{e}^{-0,0694t} = 0,95$ admet pour solution $t = -\dfrac{\ln(0,05)}{0,0694}\approx 43,17$.
    3. Interpréter ce résultat.
    4. $$\begin{array}{rl} P(X\leq t)&=\displaystyle\int_0^{t} 0,0694 e^{-0,0694 x } \;\text{d}x \\ &= \left [ -e^{-0,0694 x }\right ]_0^{x}\\ & = \left [F(x)-F(0)\right] \\ & 1-e^{-0,0694 t } \\ \end{array}$$ on a donc :$1-e^{-0,0694 t } =0,95 $ si $t\approx 43,17$, donc $P(X\leq 43,17)=0,95 $: la probabilité qu'il y ait un séisme majeur dans les 44 prochaines années est supérieur à 95%.
      Selon ce modèle, Le risque d'un séisme majeur le long de la faille de San Andreas dans les 44 prochaines années est supérieur à 95 %.
  3.  

 

Page
  • Vues: 12147

Rechercher