Nom: ... Janv. 2024

Prénom: Devoir nº 11 .../...

Le soin et la rédaction seront pris en compte dans la notation. **Faites des phrases claires et précises**. Le barème est approximatif. La calculatrice est autorisée.

9 pts Cet exercice est un questionnaire à choix multiples. Pour chacune des questions, trois réponses sont proposées, dont une seule

9 points

Attention! Le sujet est recto-verso.

Exercice 1

est exacte. Le candidat complètera le tableau de la page 3 qui sera ramassé 30 minutes apès le début de l'épreuve. O demande pas de justification. Il est attribué 1,5 point si la réponse est exacte. Aucun point n'est enlevé en l'absence de rép ou en cas de réponse fausse.						
Dans les questions 1. et 2., on co	nsidère les nombres complexes $z_1=4\sqrt{2}$	$\bar{2}e^{-i\frac{\pi}{3}} \text{ et } z_2 = \sqrt{2}e^{i\frac{5\pi}{6}}$				
1 La forme exponentielle de	$z_1 \times z_2$ est:					
a. $8e^{i\frac{\pi}{12}}$	b. $8e^{i\frac{\pi}{2}}$	c. $8\sqrt{2}e^{i\frac{\pi}{2}}$				
2 La forme exponentielle de	$\frac{z_1}{z_2}$ est:					
a. $4e^{i\frac{\pi}{6}}$	b. $4e^{i\frac{5\pi}{6}}$	c. $3e^{i\frac{\pi}{6}}$				
Dans les questions 3. et 4.,	on considère les nombres complexes z =	$=4e^{i\frac{2\pi}{3}}$ et $z'=4e^{-i\frac{2\pi}{3}}$				
3 La forme algébrique de z es	st:					
a. $-2 - 2i\sqrt{3}$	b. $2\sqrt{3} - 2i$	$\mathbf{c.} - 2 + 2i\sqrt{3}$				
4 Le nombre complexe z' est	:					
a. l'opposé de z	b. le conjugué de z	c. l'inverse de z				
Si $z_3 = 1 - i\sqrt{3}$ alors le mod	ule de z_3 et un argument de z_3 sont resp	pectivement :				
a. 2 et $\frac{\pi}{3}$	b. 2 et $-\frac{\pi}{3}$	c. 2 et $-\frac{\pi}{6}$				
6 Si $z_4 = 3e^{i\frac{\pi}{6}}$ alors z_4^3 est:						
a. un réel	b. égal à 27 <i>i</i>	c. égal à -27				

Exercice 2

2 points

Soit le nombre complexe z = -5 + 3i. Compléter :

2 pts

$$\Re c(z) = \cdots; \operatorname{Im}(z) = \cdots; |z| = \cdots$$

Exercice 3

1 point

1 pt On donne $Z = 4e^{i\frac{\pi}{5}}$ Compléter :

$$|z| = \cdots$$
 Arg $(Z) = \cdots$

Exercice 4

2,5 points

Ecrire les nombres complexes suivants sous forme algébrique :

2.5 pts

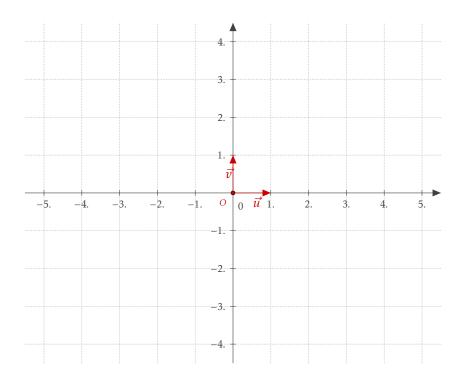
$$z_1 = \frac{1+i}{1-2i}$$
 ; $z_2 = (3+i)(1-i)$

Exercice 5

4,5 points

Dans le plan complexe, on considère les points A, B et C d'affixes respectives $z_A = 1 + i$, $z_B = -2 - i$ et $z_C = 3 - 2i$.

- pt 1 Placer dans le repère dessiné page 3 du sujet les points *A*, *B* et *C* :
- 2 pts 2 Calculer les distances AB et BC.
- 1.5 pt 3 Déterminer l'affixe du point *I* milieu de [*AB*]. Placer le point *I* sur la figure précédente.


Exercice 6

6 points

On considère les nombres complexes $z_1 = \sqrt{3} + i$ et $z_2 = \sqrt{2}e^{-i\frac{\pi}{4}}$

- 2 pts 1 Ecrire sous forme exponentielle le nombre complexe $z_1 = \sqrt{3} + i$.
- 1 pt 2 Ecrire z_2 sous forme algébrique.
- 1 pt 3 Ecrire sous forme exponentielle le nombre complexe $z_1 \times z_2$
- 1 pt 4 Ecrire $z_1 \times z_2$ sous forme algébrique.
- 1 pt 5 En déduire la valeur exacte de $\cos\left(\frac{\pi}{12}\right)$

Annexe Exercice 5

Nom:	© DS 06 ©	TSULED CISCLET	Janv. 2024
Prénom:	DS 00 •	P Devoir nº 11	/

	Question 1	Question 2	Question 3	Question 4	Question 5	Question 6
Réponse						