Nom:	DS 02	TS 6 🖁	Oct. 2017
Prénom :		Devoir nº 06	/

Le soin et la rédaction seront pris en compte dans la notation. Faites des phrases claires et précises. Le barème est approximatif. La calculatrice est autorisée.

Exercice 1 4 points

4 pts Une équation?

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^3 + 5x - 6$.

1 Etudier les variations de f. La fonction f est un polynôme ; elle est donc dérivable sur \mathbb{R} . $f'(x) = 3x^2 + 5$

signe de la dérivée : pour tout réel x on a $x^2 \ge 0$, on déduit donc $3x^2 + 5 > 0$.

La fonction dérivée est strictement positive sur \mathbb{R} , la fonction f est donc strictement croissante sur \mathbb{R} .

x	-∞ +∞
f'(x)	+
Variation de <i>f</i>	+∞

2 En déduire que l'équation f(x) = 0 a une solution unique α dans \mathbb{R} . puis en donner une valeur approchée au centième à l'aide de la calculatrice. f est continue car dérivable sur l'intervalle \mathbb{R} , f est strictement croissante sur l'intervalle $]-\infty;+\infty[$.

 $\lim_{\substack{x\to +\infty \\ f \text{ réalise donc une bijection de } \mathbb{R}}} f(x) = \lim_{\substack{x\to +\infty \\ }} x^3 = +\infty \text{ et } \lim_{\substack{x\to +\infty \\ }} f(x) = \lim_{\substack{x\to +\infty \\ }} x^3 = -\infty.$

Donc l'équation f(x) = 0 a une racine unique α dans l'intervalle \mathbb{R} .

3 Donner une valeur approchée de α à 10^{-2} près. On détaillera la démarche. Encadrons α :

Avec une calculatrice on obtient : $f(1.11) \approx -0.08$ et $f(1.12) \approx 0.0049$

Ainsi $f(1.11) < f(\alpha) < f(1.12)$, on en déduit $1.11 < \alpha < 1.12$, car f est strictement croissante sur \mathbb{R} .

Une valeur approchée de α au centième près par défaut est donc 1.11 .

Exercice 2 1 point

1 pt

On donne l'inégalité de Bernoulli :soit a > 0, $\forall n \in \mathbb{N}$, $(1 + a)^n \ge 1 + na$. Démontrer que la suite (q^n) , avec q > 1, diverge vers $+\infty$.

Comme ici q > 1, on peut écrire q = 1 + a où a > 0.

D'après l'inégalité de Bernoulli :

$$(1+a)^n \geqslant 1+na$$

 $q^n \geqslant 1+na$

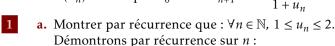
Comme ici a > 0; on déduit $\lim_{n \to +\infty} 1 + na = +\infty$, et donc d'après le théorème de minoration, on déduit :

Si
$$q > 1$$
, alors $\lim_{n \to +\infty} q^n = +\infty$

Exercice 3 4 points

4 pts Récurrence

Soit la suite (u_n) définie par $u_0 = 2$ et $u_{n+1} = 1 + \frac{1}{1 + u_n}$.



$$\mathcal{P}(n): 1 \leq u_n \leq 2$$

- \heartsuit **Initialisation**: Au rang 0 on a $u_0 = 2$ et $1 \le 2 \le 2$ donc la propriété est vraie au rang 0.
- \heartsuit **Transmission de l'hérédité :** soit $k \ge 0$, on suppose que la propriété est vraie au rang k et on montre qu'elle est vraie au rang k + 1.

D'après l'hypothèse de récurrence, on a

$$1 \le u_k \le 2$$

Enappliquant la fonction racine carrée strictement croissante $sur\mathbb{R}^+$:

$$1 \leq u_k \leq 2$$

$$0 < 2 \leq 1 + u_k \leq 3 \qquad \text{en ajoutant 1}$$

$$\frac{1}{2} \geq \frac{1}{1 + u_k} \geq \frac{1}{3} \qquad \text{en appliquant la fonction } x \mapsto \frac{1}{x} \text{ strictement décroissante sur }]0; +\infty[$$

$$\frac{3}{2} \geq 1 + \frac{1}{1 + u_k} \geq \frac{4}{3} \qquad \text{en ajoutant 1}$$

$$1 \leq \frac{4}{3} \leq u_{k+1} \leq \frac{3}{2} \leq 2$$

Ceci prouve la transmission de l'hérédité.

 \heartsuit **Conclusion** : $\mathcal{P}(0)$ est vraie.

Pour $k \ge 0$; $\mathcal{P}(k)$ vraie entraı̂ne $\mathcal{P}(k+1)$ vraie.

Ainsi, le principe de récurrence s'appliquant, pour tout $n \in \mathbb{N}$, on a : $v_n > 1$

pour tout
$$n \in \mathbb{N}$$
, on a : $1 \le u_n \le 2$.

- **b.** Si la suite (u_n) converge, que peut-on dire de sa limite? Ayant our tout $n \in \mathbb{N}$, on a : $1 \le u_n \le 2$; on obtient par passage à la limite $1 \le \lim_{n \to +\infty} u_n \le 2$
- 2 Soit f la fonction définie sur \mathbb{R}^+ par $f(x) = 1 + \frac{1}{1+x}$. On admet que la suite (u_n) converge vers ℓ telle que $f(\ell) = \ell$. Déterminer ℓ .

On résout l'équation $f(\ell) = \ell$.

$$f(\ell) = \ell \iff 1 + \frac{1}{1+\ell} = \ell$$

$$\iff \frac{1}{1+\ell} = \ell - 1$$

$$\iff 1 = (1+\ell)(\ell-1)$$

$$\iff 1 = \ell^2 - 1$$

$$\iff \ell^2 = 2$$

$$\iff \ell = \pm \sqrt{2}$$

$$\lim_{n\to+\infty}u_n\sqrt{2}$$

 $u_n = \frac{\left(\frac{1}{2}\right)^n - 2}{\left(\frac{2}{2}\right)^n + 3}$

Exercice 4 4 points

Limite de suites 4 pts

Déterminer soigneusement les limites de suites suivantes :

$$\mathbf{1} \quad u_n = \frac{n^2 + 2}{n + 1}$$

1
$$u_n = \frac{n^2 + 2}{n+1}$$

2 $u_n = 3 + \frac{\cos n}{n+1}$

• Pour tout entier naturel *n* non nul on peut écrire :

$$\frac{n^2 + 2}{n+1} = \frac{n^2 \left(1 + \frac{2}{n}\right)}{n \left(1 + \frac{1}{n}\right)} = n \times \frac{1 + \frac{2}{n}}{1 + \frac{1}{n}}$$

Or
$$\lim_{n \to +\infty} \frac{2}{n} = \lim_{n \to +\infty} \frac{2}{n} = 0$$
 donc $\lim_{n \to +\infty} \frac{1 + \frac{2}{n}}{1 + \frac{1}{n}} = 2$.

On en déduit que

$$\lim_{n \to +\infty} \frac{n^2 + 2}{n+1} = +\infty$$

• Pour tout entier naturel *n* non nul on peut écrire :

$$-1 \leqslant \cos(n) \leqslant 1$$
$$-\frac{1}{n+1} \leqslant \frac{\cos(n)}{n+1} \leqslant \frac{1}{n+1}$$

Or $\lim_{n\to+\infty} -\frac{1}{n+1} = \lim_{n\to+\infty} \frac{1}{n+1} = 0$ donc, d'après le théorème d'encadrement

$$\lim_{n \to +\infty} 3 + \frac{\cos(n)}{n+1} = 3$$

• Comme $-1 < \frac{1}{2} < 1$, $\lim_{n \to +\infty} \left(\frac{1}{2}\right)^n = 0$, comme $-1 < \frac{2}{3} < 1$, $\lim_{n \to +\infty} \left(\frac{2}{3}\right)^n = 0$, donc $\lim_{n\to+\infty} \left(\frac{1}{2}\right)^n - 2 = -2$ et $\lim_{n\to+\infty} \left(\frac{2}{3}\right)^n + 3 = 3$. On en déduit que

$$\lim_{n \to +\infty} \frac{\left(\frac{1}{2}\right)^n - 2}{\left(\frac{2}{3}\right)^n + 3} = -\frac{2}{3}$$

•
$$u_n = 3n - 1 - \frac{n+3}{1-2n}$$

Or
$$\lim_{n \to +\infty} 3n - 1 = +\infty$$
, et $\frac{n+3}{1-2n} = \frac{n\left(1+\frac{3}{n}\right)}{n\left(\frac{1}{n}-2\right)} = \frac{\left(1+\frac{3}{n}\right)}{\left(\frac{1}{n}-2\right)}$

$$\lim_{n \to +\infty} \frac{\left(1+\frac{3}{n}\right)}{\left(\frac{1}{n}-2\right)} = -\frac{1}{2}, \quad \lim_{n \to +\infty} 3n - 1 = +\infty$$

$$\lim_{n \to +\infty} -\frac{n+3}{1-2n} = \frac{1}{2}$$
Par somme $\lim_{n \to +\infty} u_n = +\infty$

$$\lim_{n \to +\infty} 3n - 1 - \frac{n+3}{1-2n} = +\infty$$

Exercice 5 4 points

4 pts Somme de termes

Soit la suite (u_n) définie sur \mathbb{N}^* par $u_n = \frac{1}{n+\sqrt{1}} + \frac{1}{n+\sqrt{2}} + \frac{1}{n+\sqrt{3}} + \cdots + \frac{1}{n+\sqrt{n}}$.

Calculer u_1, u_2, u_3 . Pour les termes u_2 et u_3 on donnera une valeur approchée à 10^{-2} près.

•
$$u_1 = \frac{1}{1 + \sqrt{1}} = \frac{1}{2}$$

•
$$u_2 = \frac{1}{2 + \sqrt{1}} + \frac{1}{2 + \sqrt{2}} \approx 0,63$$

•
$$u_3 = \frac{1}{3+\sqrt{1}} + \frac{1}{3+\sqrt{2}} + \frac{1}{3+\sqrt{3}} \approx 0,69$$

$$u_1 = \frac{1}{2} ; u_2 \approx 0,63 ; u_3 \approx 0,69$$

2 Compléter l'algorithme suivant qui calcule u_n en fonction de n.

	Les variables sont les entiers naturels N,I et le réel U .
Initialisation:	
	Lire N
	Affecter à U la valeur 0
Traitement:	Pour <i>I</i> de 1 à <i>N</i> faire
	$\frac{1}{U} + U \rightarrow U$
	$\frac{1}{N+\sqrt{I}} + O \rightarrow O$
	Fin Pour
Sortie:	Afficher U

3 On donne le tableau suivant pour certaines valeurs de n:

n	10	50	100	1000	10000
u_n	0,819	0,914	0,939	0,979	0,993

Conjecturer la monotonie de la suite et sa convergence.

La suite (u_n) semble croissante majorée; De plus elle semble converger vers 1.

4 Montrer que, pour tout entier k avec $1 \le k \le n$, on a :

$$\frac{1}{n+\sqrt{n}} \le \frac{1}{n+\sqrt{k}} \le \frac{1}{n+1}.$$

pour tout entier k avec $1 \le k \le n$, on a :

$$1 \le k \le n$$

$$\sqrt{1} \le \sqrt{k} \le \sqrt{n}$$
 en appliquant la fonction $x \mapsto \sqrt{x}$ strictement croissante sur $[0; +\infty[$

$$n+1 \le n+\sqrt{k} \le n+\sqrt{n}$$
 en ajoutant n

$$\frac{1}{n+1} \ge \frac{1}{n+\sqrt{k}} \ge \frac{1}{n+\sqrt{n}}$$
 en appliquant la fonction $x \mapsto \frac{1}{x}$ strictement décroissante sur $[0; +\infty[$

$$\frac{1}{n+\sqrt{n}} \le \frac{1}{n+\sqrt{k}} \ge \frac{1}{n+1}$$

5 En déduire que la suite converge et calculer sa limite. On écrit l'ingalité précédente pour k variant de 1 à n

$$k = 1 \qquad \frac{1}{n + \sqrt{n}} \le \frac{1}{n + \sqrt{1}} \le \frac{1}{n + 1}$$

$$k = 2 \qquad \frac{1}{n + \sqrt{n}} \le \frac{1}{n + \sqrt{2}} \le \frac{1}{n + 1}$$

$$k = 3 \qquad \frac{1}{n + \sqrt{n}} \le \frac{1}{n + \sqrt{3}} \le \frac{1}{n + 1}$$

$$\dots$$

$$k = n - 1 \qquad \frac{1}{n + \sqrt{n}} \le \frac{1}{n + \sqrt{n - 1}} \le \frac{1}{n + 1}$$

$$k = n \qquad \frac{1}{n + \sqrt{n}} \le \frac{1}{n + \sqrt{n}} \le \frac{1}{n + 1}$$

On ajoute membre à membre ces *n* inégalités de même sens, on obtient

$$n \times \frac{1}{n + \sqrt{n}} \le u_n \le n \times \frac{1}{n + 1}$$

Notons
$$v_n = n \times \frac{1}{n + \sqrt{n}} = n \times \frac{1}{n\left(1 + \frac{\sqrt{n}}{n}\right)} = \frac{1}{\left(1 + \frac{1}{\sqrt{n}}\right)}$$

et
$$w_n = n \times \frac{1}{n+1} = \left(1 + \frac{1}{n}\right)$$

et $w_n = n \times \frac{1}{n+1} = \left(1 + \frac{1}{n}\right)$ Comme $\lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$ et $\lim_{n \to +\infty} \frac{1}{n} = 0$; on déduit que :

$$v_n \le u_n \le w_n$$

avec $\lim_{n\to +\infty} v_n = 1$ et $\lim_{n\to +\infty} w_n = 1$; le théorème des gendarmes s'appliquant :

$$\lim_{n \to +\infty} u_n = 1$$

Exercice 6

5 points

Etude d'une suite 5 pts

La suite (u_n) est définie par $u_0 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{1}{2}u_n + 2n - 1$.

- 1 Déterminer les termes u_1, u_2, u_3
 - n = 0 dans la relation $u_{n+1} = \frac{1}{2}u_n + 2n 1$ donne $u_1 = \frac{1}{2}u_0 + 2 \times 0 1 = \frac{1}{2} 1 = -\frac{1}{2}$
 - n = 1 dans la relation $u_{n+1} = \frac{1}{2}u_n + 2n 1$ donne $u_2 = \frac{1}{2}u_1 + 2 \times 1 1 = \frac{1}{2} \times \left(-\frac{1}{2}\right) + 1 = \frac{3}{4}$
 - n = 2 dans la relation $u_{n+1} = \frac{1}{2}u_n + 2n 1$ donne $u_3 = \frac{1}{2}u_2 + 2 \times 2 1 = \frac{1}{2} \times \left(\frac{3}{4}\right) + 3 = \frac{27}{8}$

$$u_1 = -\frac{1}{2}; u_2 = \frac{3}{4}; u_3 = \frac{27}{8}$$

- On définit la suite (v_n) par $v_n = u_n 4n + 10$.
 - a. Démontrer que (v_n) est une suite géométrique de raison $\frac{1}{2}$.

$$\begin{split} v_{n+1} &= u_{n+1} - 4(n+1) + 10 \\ &= \frac{1}{2}u_n + 2n - 1 - 4n - 4 + 10 \\ &= \frac{1}{2}u_n - 2n + 5 \\ &= \frac{1}{2}\left(u_n - 4n + 10\right) \\ &= \frac{1}{2}v_n \end{split}$$

La suite (v_n) est donc une suite géométrique de raison $\frac{1}{2}$.

b. Exprimer v_n , puis u_n en fonction de n.

Comme la suite (v_n) est donc une suite géométrique de raison $\frac{1}{2}$, $v_n = q^n \times v_0$ $v_0 = u_0 + 10 = 11$ puis

$$v_n = 11 \times \left(\frac{1}{2}\right)^{n+1}$$

Enfin de l'égalité : $v_n = u_n - 4n + 10$, on déduit

$$u_n = v_n + 4n - 10 = 11 \times \left(\frac{1}{2}\right)^{n+1} + 4n - 10$$

$$u_n = 11 \times \left(\frac{1}{2}\right)^n + 4n - 10$$

c. Déterminer la limite de la suite (u_n) .

Comme $-1 < \frac{1}{2} < 1$, on déduit $\lim_{n \to +\infty} 11 \left(\frac{1}{2}\right)^n = 0$

$$\lim_{n \to +\infty} \left(\frac{1}{2}\right)^n = 0$$

$$\lim_{n \to +\infty} 4n - 10 = +\infty$$
Par somme $\lim_{x \to +\infty} u_n = +\infty$

3 On pose $S_n = u_0 + u_1 + u_2 + \dots + u_n$.

Monter que : $S_n = 22 \left[1 - \left(\frac{1}{2} \right)^{n+1} \right] + (n+1)(2n-10).$

On utilise la relation $u_k = 2 \times \left(\frac{1}{2}\right)^{k+1} + 4k - 10$ au rang 0;1;2 ··· ; n:

$$k = 0 u_0 = 11 \times \left(\frac{1}{2}\right)^0 + 4 \times 0 - 10$$

$$k = 1 u_1 = 11 \times \left(\frac{1}{2}\right)^1 + 4 \times 1 - 10$$

$$k = 2 u_2 = 11 \times \left(\frac{1}{2}\right)^2 + 4 \times 2 - 10$$

$$k = 3 u_3 = 11 \times \left(\frac{1}{2}\right)^3 + 4 \times 3 - 10$$

$$\dots$$

$$k = n - 1 u_{n-1} = 11 \times \left(\frac{1}{2}\right)^{n-1} + 4 \times (n-1) - 10$$

$$k = n u_n = 11 \times \left(\frac{1}{2}\right)^n + 4 \times n - 10$$

On ajoute membre à membre ces n + 1 égalités ; il vient

$$\begin{split} S_n &= u_0 + u_1 + u_2 + \dots + u_n &= 11 \times \left[1 + \left(\frac{1}{2} \right)^1 + \left(\frac{1}{2} \right)^2 + \left(\frac{1}{2} \right)^3 + \dots + \left(\frac{1}{2} \right)^{n+1} \right] + 4 \left[1 + 2 + 3 + \dots + n \right] - 10(n+1) \\ &= 11 \times \left[\frac{1 - \text{raison}^{\text{Nombres de termes}}}{1 - \text{raison}} \times \text{Premier terme} \right] + 4 \left[\frac{N(P+D)}{2} \right] - 10(n+1) \\ &= 11 \times \left[\frac{1 - \left(\frac{1}{2} \right)^{n+1}}{1 - \frac{1}{2}} \times 1 \right] + 4 \left[\frac{(n+1)(0+n)}{2} \right] - 10(n+1) \\ &= 22 \left[1 - \left(\frac{1}{2} \right)^{n+1} \right] + 2n(n+1) - 10(n+1) \\ &= 22 \left[1 - \left(\frac{1}{2} \right)^{n+1} \right] + (n+1)(2n-10) \\ &S_n = 22 \left[1 - \left(\frac{1}{2} \right)^{n+1} \right] + (n+1)(2n-10). \end{split}$$

Exercice 7 2 points

2 pts v Vrai-Faux

Pour chacune des affirmatons suivantes, répondre par Vrai ou Faux et justifier votre réponse.

Soit (u_n) une suite définie et croissante sur N. Pour tout n ≥ 0, on a : u_n < 100.
 Affirmation 1 : On ne peut rien en déduire sur la convergence de la suite (u_n). Ayant pour tout n ≥ 0, on a : u_n < 100, la suite (u_n) est majorée par 100.
 Ainsi la suite est croissante et majorée.

On peut donc affirmer que la suite (u_n) est convergente, d'après le théorème de la convergence monotone.

2 Soit la suite (v_n) définie par $v_0 = 1024$ et $v_{n+1} = \sqrt{v_n} - 1$

Affirmation 2 : La suite (v_n) n'est pas définie sur \mathbb{N} . Avec une calculatrice, ou à la main...

• $v_0 = 1024$

•
$$v_1 = \sqrt{v_0} - 1 = \sqrt{1024} - 1 = 31$$

•
$$v_2 = \sqrt{v_1} - 1 = \sqrt{31} - 1$$

•
$$v_3 = \sqrt{v_2} - 1 \approx 1,13$$

•
$$v_4 = \sqrt{v_3} - 1 \approx 0.06$$

•
$$v_5 = \sqrt{v_4} - 1 \approx -0.74$$

On ne peut donc pas calculer v_5 .

 $v_4 < 0$, on peut donc calculer sa racine carrée et donc la suite (v_n) n'est pas définie pour $n \ge 5$.