Rédigé par Luc Giraud le . Publié dans Annales S 2015.

Baccalauréat S Antilles-Guyane septembre 2015

Exercice 1 6 points


Commun à tous les candidats


Soit $n$ un entier naturel non nul. On considère la fonction $f_n$ définie et dérivable sur l'ensemble $\mathbb R$ des nombres réels par \[f_n(x) = x^2 \text{e}^{- 2nx}.\] On note $\mathcal{C}_n$ la courbe représentative de la fonction $f_n$ dans un repère orthogonal. On définit, pour tout entier naturel $n$ non nul, $I_n = \displaystyle\int_0^1 f_n(x)\: \text{d}x$.

Partie A : Étude de la fonction $f_1$

 

  1. La fonction $f_1$ est définie sur $\mathbb R$ par $f_1(x) = x^2\text{e}^{-2x}$. On admet que $f_1$ est dérivable sur $\mathbb R$ et on note $f_1'$ sa dérivée.
    1. Justifier que pour tout réel $x,\: f_1'(x) = 2x\text{e}^{-2x}(1 - x)$.
    2. Étudier les variations de la fonction $f_1$ sur $\mathbb R$.
    3. Déterminer la limite de $f_1$ en $- \infty$.
    4. Vérifier que pour tout réel $x,\: f_1(x) = \left(\dfrac{x}{\text{e}^x}\right)^2$. En déduire la limite de $f_1$ en $+ \infty$.
  2. En utilisant un système de calcul formel, on trouve qu'une primitive $F_1$ de la fonction $f_1$ est donnée par $F_1(x) = - \text{e}^{-2x}\left(\dfrac{x^2}{2} + \dfrac{x}{2} + \dfrac{1}{4}\right)$. En déduire la valeur exacte de $I_1$.

 

Partie B : Étude de la suite $\left(I_n\right)$

 

  1. Soit $n$ un entier naturel non nul.
    1. Interpréter graphiquement la quantité $I_n$.
    2. Émettre alors une conjecture sur le sens de variation et sur la limite éventuelle de la suite $\left(I_n\right)$. Expliciter la démarche qui a mené à cette conjecture.
    1. Justifier que, pour tout entier naturel $n$ non nul et pour tout réel $x$ appartenant à [0 ; 1], \[f_{n+1}(x) = \text{e}^{-2x}f_n(x).\]
    2. En déduire, pour tout entier naturel $n$ non nul et pour tout réel $x$ appartenant à [0 ; 1], \[f_{n+1}(x) \leqslant f_n(x).\]
    3. Déterminer alors le sens de variation de la suite $\left(I_n\right)$.
  2. Soit $n$ un entier naturel non nul.
    1. Justifier que pour tout entier naturel $n$ non nul et pour tout réel $x$ appartenant à [0 ; 1], \[0 \leqslant f_n(x) \leqslant \text{e}^{-2nx}.\]
    2. En déduire un encadrement de la suite $\left(I_n\right)$, puis sa limite.

Correction de l'exercice 1 (6 points)


Commun à tous les candidats


Soit $n$ un entier naturel non nul. On considère la fonction $f_n$ définie et dérivable sur l'ensemble $\mathbb R$ des nombres réels par \[f_n(x) = x^2 \text{e}^{- 2nx}.\] On note $\mathcal{C}_n$ la courbe représentative de la fonction $f_n$ dans un repère orthogonal. On définit, pour tout entier naturel $n$ non nul, $I_n = \displaystyle\int_0^1 f_n(x)\: \text{d}x$.

Partie A : Étude de la fonction $f_1$

 

  1. La fonction $f_1$ est définie sur $\mathbb R$ par $f_1(x) = x^2\text{e}^{-2x}$. On admet que $f_1$ est dérivable sur $\mathbb R$ et on note $f_1'$ sa dérivée.
    1. Justifier que pour tout réel $x,\: f_1'(x) = 2x\text{e}^{-2x}(1 - x)$.
    2. Pour tout réel $x$, on a $f_1′(x)=2x\text{e}^{-2x}-2x^2\text{e}^{-2x}=2x\text{e}^{-2x}(1-x)$.
      $\quad$
    3. Étudier les variations de la fonction $f_1$ sur $\mathbb R$.
    4. Puisque la fonction exponentielle est strictement positive sur $\mathbb R$, le signe de $f_1(x)$ ne dépend que de celui de $x(1-x)$. Il s’agit d’un polynôme du second degré dont le coefficient principal est $a=-1$ et les racines sont $0$ et $1$.
      Par conséquent $f_1′(x)$ est négatif sur les intervalles $]-\infty;0]$ et $[1;+\infty[$ et négatif sur $[0;1]$.
      Ainsi la fonction $f_1$ est décroissante sur $]-\infty;0]$, croissante sur $[0;1]$ et décroissante sur $[1;+\infty[$.
      $\quad$
    5. Déterminer la limite de $f_1$ en $- \infty$.
    6. $\lim\limits_{x \to -\infty} -2x=+\infty$ par conséquent $\lim\limits_{x \to -\infty} \text{e}^{-2x} = +\infty$.
      $\lim\limits_{x \to -\infty} x^2 = +\infty$ donc par produit $\lim\limits_{x \to -\infty} f_1(x)=+\infty$.
      $\quad$
    7. Vérifier que pour tout réel $x,\: f_1(x) = \left(\dfrac{x}{\text{e}^x}\right)^2$. En déduire la limite de $f_1$ en $+ \infty$.
    8. d. $f_1(x)=x^2\text{e}^{-2x}=\dfrac{x^2}{\text{e}^{2x}} = \dfrac{x^2}{\left(\text{e}^x\right)^2} = \left(\dfrac{x}{\text{e}^x}\right)^2$.
      $\quad$
      On sait que $\lim\limits_{x \to +\infty} \dfrac{\text{e}^x}{x}=+\infty$ donc $\lim\limits_{x \to +\infty} \dfrac{x}{\text{e}^x}=0$.
      Puisque $\lim\limits_{X \to +\infty} X^2 = 0$ on obtient par composition $\lim\limits_{x \to +\infty} f_1(x)=0$.
      $\quad$
  2. En utilisant un système de calcul formel, on trouve qu'une primitive $F_1$ de la fonction $f_1$ est donnée par $F_1(x) = - \text{e}^{-2x}\left(\dfrac{x^2}{2} + \dfrac{x}{2} + \dfrac{1}{4}\right)$. En déduire la valeur exacte de $I_1$.
  3. On a :
    $\begin{align*} I_1 &= \int_0^1 f_1(x)\mathrm{d}x \\\\
    &= F_1(1)-F_1(0) \\\\
    &=-\text{e}^{-2} \times \dfrac{5}{4} + \dfrac{1}{4}
    \end{align*}$
    $\quad$

 

Partie B : Étude de la suite $\left(I_n\right)$

 

  1. Soit $n$ un entier naturel non nul.
    1. Interpréter graphiquement la quantité $I_n$.
    2. La fonction $f_n$ est continue (car dérivable) sur $\mathbb R$ et positive sur $[0;1]$.
      Par conséquent $I_n$ correspond à l’aire comprise entre la courbe $\mathscr{C}_n$, l’axe des abscisses et les droites d’équation $x=0$ et $x=1$.
      $\quad$
    3. Émettre alors une conjecture sur le sens de variation et sur la limite éventuelle de la suite $\left(I_n\right)$. Expliciter la démarche qui a mené à cette conjecture.
    4. On calcule des valeurs approchées de $I_n$ à l’aide de la calculatrice.
      $I_1 \approx 0,0808$, $I_2 \approx 0,0238$, $I_3 \approx 0,0087$, $I_4 \approx 0,0039$, $I_{100} \approx 2 \times 10^{-7}$.
      La suite $\left(I_n\right)$ semble donc décroissante et converger vers $0$.
      $\quad$
    1. Justifier que, pour tout entier naturel $n$ non nul et pour tout réel $x$ appartenant à [0 ; 1], \[f_{n+1}(x) = \text{e}^{-2x}f_n(x).\]
    2. Soit $n$ un entier naturel non nul.
      $f_{n+1}(x)=x^2\text{e}^{-2(n+1)x} = x^2\text{e}^{-2nx-2x} = x^2\text{e}^{-2nx}\times\text{e}^{-2x}=f_n(x)\text{e}^{-2x}$
      $\quad$
    3. En déduire, pour tout entier naturel $n$ non nul et pour tout réel $x$ appartenant à [0 ; 1], \[f_{n+1}(x) \leqslant f_n(x).\]
    4. Sur $[0;1]$, la fonction $\text{e}^{-2x} \le \text{e}^0$ soit $\text{e}^{-2x} \le 1$.
      Par conséquent, en multipliant les deux côtés de cette inégalité par $f_n(x)$, qui est toujours positif sur $[0;1]$ car produit de facteurs positifs, on obtient :
      $f_{n+1}(x) = f_n(x)\text{e}^{-2x} \le f_n(x)$.
      $\quad$
    5. Déterminer alors le sens de variation de la suite $\left(I_n\right)$.
    6. La suite $\left(I_n\right)$ est donc décroissante.
  2. Soit $n$ un entier naturel non nul.
    1. Justifier que pour tout entier naturel $n$ non nul et pour tout réel $x$ appartenant à [0 ; 1], \[0 \leqslant f_n(x) \leqslant \text{e}^{-2nx}.\]
    2. Sur $[0;1]$, $0 \le x^2 \le 1$.
      Par conséquent, en multipliant l’encadrement par $\text{e}^{-2nx}$ qui est toujours positif, on obtient $0 \le f_n(x) \le \text{e}^{-2nx}$ pour tout entier naturel $n$ non nul.
      $\quad$
    3. En déduire un encadrement de la suite $\left(I_n\right)$, puis sa limite.
    4. On a donc, en intégrant sur $[0;1]$ :
      $\begin{align*} 0 \le I_n \le \int_0^1 \text{e}^{-2nx}\mathrm{d}x &\Leftrightarrow 0 \le I_n \le \left[\dfrac{\text{e}^{-2nx}}{-2n}\right]_0^1 \\\\
      &\Leftrightarrow 0 \le I_n \le \dfrac{\text{e}^{-2n}}{-2n}+\dfrac{1}{2n}
      \end{align*}$
      Or $\lim\limits_{n \to +\infty} \dfrac{1}{2n}=0$, $\lim\limits_{n \to +\infty} \text{e}^{-2n} = 0$ donc $\lim\limits_{n \to +\infty} \dfrac{\text{e}^{-2n}}{-2n} = 0$.
      Par conséquent $\lim\limits_{n \to +\infty} \left(\dfrac{\text{e}^{-2n}}{-2n}+\dfrac{1}{2n}\right) = 0$
      D’après le théorème des gendarmes, on a donc $\lim\limits_{n \to +\infty} I_n =0$.
      $\quad$

Exercice 2 5 points


Commun à tous les candidats

 


Dans un supermarché, on réalise une étude sur la vente de bouteilles de jus de fruits sur une période d'un mois.


Parmi les bouteilles qui ne sont pas de jus d'orange, la proportion des bouteilles de « pur jus » est notée $x$, où $x$ est un réel de l'intervalle [0 ; 1]. Par ailleurs, 20% des bouteilles de jus de fruits vendues possèdent l'appellation « pur jus ».
On prélève au hasard une bouteille de jus de fruits passée en caisse.
On définit les évènements suivants :
$R$ : la bouteille prélevée est une bouteille de jus d'orange ;
$J$ : la bouteille prélevée est une bouteille de « pur jus ».

Partie A

 

  1. Représenter cette situation à l'aide d'un arbre pondéré.
  2. Déterminer la valeur exacte de $x$.
  3. Une bouteille passée en caisse et prélevée au hasard est une bouteille de « pur jus ». Calculer la probabilité que ce soit une bouteille de jus d'orange.

 

Partie B


Afin d'avoir une meilleure connaissance de sa clientèle, le directeur du supermarché fait une étude sur un lot des $500$ dernières bouteilles de jus de fruits vendues.
On note $X$ la variable aléatoire égale au nombre de bouteilles de « pur jus »  dans ce lot.
On admettra que le stock de bouteilles présentes dans le supermarché est suffisamment important pour que le choix de ces $500$ bouteilles puisse être assimilé à un tirage au sort avec remise.

  1. Déterminer la loi suivie par la variable aléatoire $X$. On en donnera les paramètres.
  2. Déterminer la probabilité pour qu'au moins 75 bouteilles de cet échantillon de $500$ bouteilles soient de « pur jus ». On arrondira le résultat au millième.

Partie C


Un fournisseur assure que 90% des bouteilles de sa production de pur jus d'orange contiennent moins de 2% de pulpe. Le service qualité du supermarché prélève un échantillon de 900 bouteilles afin de vérifier cette affirmation. Sur cet échantillon, $766$ bouteilles présentent moins de 2% de pulpe.

  1. Déterminer l'intervalle de fluctuation asymptotique de la proportion de bouteilles contenant moins de 2% de pulpe au seuil de 95%.
  2. Que penser de l'affirmation du fournisseur ?

 


Correction de l'exercice 2 (5 points)


Commun à tous les candidats

 


Dans un supermarché, on réalise une étude sur la vente de bouteilles de jus de fruits sur une période d'un mois.


Parmi les bouteilles qui ne sont pas de jus d'orange, la proportion des bouteilles de « pur jus » est notée $x$, où $x$ est un réel de l'intervalle [0 ; 1]. Par ailleurs, 20% des bouteilles de jus de fruits vendues possèdent l'appellation « pur jus ».
On prélève au hasard une bouteille de jus de fruits passée en caisse.
On définit les évènements suivants :
$R$ : la bouteille prélevée est une bouteille de jus d'orange ;
$J$ : la bouteille prélevée est une bouteille de « pur jus ».

Partie A

 

  1. Représenter cette situation à l'aide d'un arbre pondéré.
  2. Déterminer la valeur exacte de $x$.
  3. D’après la formule des probabilités totales on a :
    $\begin{align*} \phantom{\Leftrightarrow }p(J) &=p(R \cap J)+p\left(\overline{R} \cap J\right) \\\\
    \Leftrightarrow 0,2&=0,4 \times 0,25 + 0,6x \\\\
    \Leftrightarrow 0,1&=0,6x\\\\
    \Leftrightarrow x&=\dfrac{1}{6}
    \end{align*}$
    $\quad$
  4. Une bouteille passée en caisse et prélevée au hasard est une bouteille de « pur jus ». Calculer la probabilité que ce soit une bouteille de jus d'orange.
  5. On veut calculer :
    $\begin{align*} p_J(R)&=\dfrac{p(J\cap R)}{p(J)} \\\\
    &=\dfrac{0,4 \times 0,25}{0,2} \\\\
    &=\dfrac{1}{2}
    \end{align*}$
    $\quad$

 

Partie B


Afin d'avoir une meilleure connaissance de sa clientèle, le directeur du supermarché fait une étude sur un lot des $500$ dernières bouteilles de jus de fruits vendues.
On note $X$ la variable aléatoire égale au nombre de bouteilles de « pur jus »  dans ce lot.
On admettra que le stock de bouteilles présentes dans le supermarché est suffisamment important pour que le choix de ces $500$ bouteilles puisse être assimilé à un tirage au sort avec remise.

  1. Déterminer la loi suivie par la variable aléatoire $X$. On en donnera les paramètres.
  2. Il s’agit de $500$ tirages indépendants, avec remise, aléatoires ne présentant que deux issues : $J$ et $\overline{J}$. De plus $p(J)=0,2$.
    La variable aléatoire $X$ suit donc la loi binomiale de paramètres $n=500$ et $p=0,2$.
    $\quad$
  3. Déterminer la probabilité pour qu'au moins 75 bouteilles de cet échantillon de $500$ bouteilles soient de « pur jus ». On arrondira le résultat au millième.
  4. On veut calculer $P(X\ge 75) = 1-P(X \le 74) \approx 0,998$
    La probabilité qu’au moins $75$ bouteilles de cet échantillon soient pur jus est donc d’environ $99,8\%$.
    $\quad$

 

Partie C


Un fournisseur assure que 90% des bouteilles de sa production de pur jus d'orange contiennent moins de 2% de pulpe. Le service qualité du supermarché prélève un échantillon de 900 bouteilles afin de vérifier cette affirmation. Sur cet échantillon, $766$ bouteilles présentent moins de 2% de pulpe.

  1. Déterminer l'intervalle de fluctuation asymptotique de la proportion de bouteilles contenant moins de 2% de pulpe au seuil de 95%.
  2. On a $n=900$ et $p=0,9$
    Ainsi $n = 900 \ge 30 \checkmark$ $\quad np=810 \ge 5 \checkmark$ $\quad n(1-p) = 90 \ge 5 \checkmark$.
    Un intervalle de fluctuation asymptotique au seuil de $95\%$ est donc :
    $\begin{align*} I_{900} &=\left[0,9-1,96\sqrt{\dfrac{0,9 \times 0,1}{900}};0,9+1,96\sqrt{\dfrac{0,9 \times 0,1}{900}}\right] \\\\
    & =[0,8804;0,9196]
    \end{align*}$
    $\quad$
  3. Que penser de l'affirmation du fournisseur ?
  4. La fréquence observée est $f=\dfrac{766}{900} \approx 0,851 \notin I_{900}$.
    Par conséquent, au risque de $5\%$ on peut remettre en question l’affirmation du fournisseur.
    $\quad$

Exercice 3 4 points


Commun à tous les candidats


Les trois questions sont indépendantes. Toute réponse doit être justifiée.

  1. On définit une suite $\left(u_n\right)$ de réels strictement positifs par \[u_0 = 1\quad \text{et pour tout entier naturel } \:n,\quad \ln \left(u_{n+1}\right) = \ln \left(u_{n}\right) - 1.\]
    La suite $\left(u_n\right)$ est-elle géométrique ?
  2. Soit $\left(v_n\right)$ une suite à termes strictement positifs. On définit la suite $\left(w_n\right)$ par, pour tout entier naturel $n,\: w_n = 1 - \ln \left(v_{n}\right)$.
    La proposition $(\mathcal{P})$ suivante est-elle vraie ou fausse ?
    \[(\mathcal{P}) : \text{si la suite }\:\left(v_{n}\right)\: \text{est majorée alors la suite }\:\left(w_{n}\right)\: \text{est majorée.}\]
  3. La suite $\left(z_{n}\right)$ de nombres complexes est définie par \[z_0 = 2 + 3\text{i}\: \text{ et, pour tout entier naturel }\:n \:\:\text{par}\: z_{n+1} = \left(\dfrac{\sqrt{2}}{4} + \text{i}\dfrac{\sqrt{6}}{4} \right)z_n.\] Pour quelles valeurs de $n$,$\left|z_n\right|$ est-il inférieur ou égal à $10^{-20}$ ?

 


Exercice 3 4 points


Commun à tous les candidats


Les trois questions sont indépendantes. Toute réponse doit être justifiée.

  1. On définit une suite $\left(u_n\right)$ de réels strictement positifs par \[u_0 = 1\quad \text{et pour tout entier naturel } \:n,\quad \ln \left(u_{n+1}\right) = \ln \left(u_{n}\right) - 1.\]
    La suite $\left(u_n\right)$ est-elle géométrique ?
  2. On a $\ln\left(u_{n+1}\right) = \ln \left(u_n\right) -1 = \ln \dfrac{u_n}{\text{ e}}$.
    Cela signifie donc que $u_{n+1}=\dfrac{u_n}{\text{ e}}$.
    La suite $\left(u_n\right)$ est donc géométrique de raison $\dfrac{1}{\text{ e}}$ et de premier terme $u_0=1$.
    $\quad$
  3. Soit $\left(v_n\right)$ une suite à termes strictement positifs. On définit la suite $\left(w_n\right)$ par, pour tout entier naturel $n,\: w_n = 1 - \ln \left(v_{n}\right)$.
    La proposition $(\mathcal{P})$ suivante est-elle vraie ou fausse ?
    \[(\mathcal{P}) : \text{si la suite }\:\left(v_{n}\right)\: \text{est majorée alors la suite }\:\left(w_{n}\right)\: \text{ est majorée.}\]
  4. Prenons par exemple la suite $\left(v_n\right)$ définie par $v_n=\text{ e}^{-n}$.
    Pour tout entier naturel $n$, on a $v_n \le 1$. La suite $\left(v_n\right)$ est donc majorée.
    $w_n=1-\ln\left(v_n\right)=1-\ln \text{ e}^{-n} = 1-(-n)=1+n$.
    La suite $\left(w_n\right)$ n’est donc pas majorée.
    La proposition est donc fausse.
    $\quad$
  5. La suite $\left(z_{n}\right)$ de nombres complexes est définie par \[z_0 = 2 + 3\text{i}  \text{  et, pour tout entier naturel  }\:n  \text{par}\: z_{n+1} = \left(\dfrac{\sqrt{2}}{4} + \text{i}\dfrac{\sqrt{6}}{4} \right)z_n.\] Pour quelles valeurs de $n$,$\left|z_n\right|$ est-il inférieur ou égal à $10^{-20}$ ?
  6. $\left|\dfrac{\sqrt{2}}{4}+\text{ i}\dfrac{\sqrt{6}}{4}\right|=\sqrt{\dfrac{1}{2}}=\dfrac{\sqrt{2}}{2}$
    On a donc $\left|z_{n+1}\right|=\dfrac{\sqrt{2}}{2}\left|z_n\right|$.
    La suite $\left(\left|z_n\right|\right)$ est donc géométrique de raison $\dfrac{\sqrt{2}}{2}$
    Son premier terme est $\left|z_0\right| = \sqrt{13}$.
    Ainsi, pour tout entier naturel $n$, on a $\left|z_n\right|=\sqrt{13}\times \left(\dfrac{\sqrt{2}}{2}\right)^n$.
    On cherche la plus petite valeur de $n$ telle que :
    $\begin{align*} \sqrt{13}\times \left(\dfrac{\sqrt{2}}{2}\right)^n \le 10^{-20} &\Leftrightarrow \left(\dfrac{\sqrt{2}}{2}\right)^n \le \dfrac{10^{-20}}{\sqrt{13}} \\\\
    &\Leftrightarrow n\ln \dfrac{\sqrt{2}}{2} \le \ln \dfrac{10^{-20}}{\sqrt{13}} \\\\
    &\Leftrightarrow n \ge \dfrac{\ln \dfrac{10^{-20}}{\sqrt{13}}}{\ln \dfrac{\sqrt{2}}{2}} \\\\
    &\Leftrightarrow 137
    \end{align*}$
    Par conséquent, pour tout entier naturel supérieur ou égal à $137$, $\left|z_n\right|\le 10^{20}$.
    $\quad$

 


Exercice 4 5 points


Candidats N'AYANT PAS SUIVI l'enseignement de spécialité mathématiques


Soit ABCDEFGH le cube ci-dessous. 

On se place dans le repère orthonormé $\left(A~;~\vec{\text{AB}},\: \vec{\text{AD}},\: \vec{\text{AE}}\right)$.

    1. Montrer que la droite (DB) admet pour représentation paramétrique \[\left\{\begin{array}{l c l} x &=& \phantom{1 -}s\\ y &=& 1 - s ,\\ z &=& \phantom{1 -}0 \end{array}\right.,\: \text{où s décrit l'ensemble } \mathbb R\: \text{des nombres réels}.\]
    2. Montrer que les points de la droite (AG) sont les points de coordonnées $(t~;~t~;~t)$ où $t$ est un réel.
  1. Soit $M$ un point quelconque de la droite (DB) et $N$ un point quelconque de la droite (AG). Démontrer que la droite $(MN)$ est perpendiculaire aux deux droites (AG) et (DB) si et seulement si $M$ et $N$ ont pour coordonnées respectives $\left(\frac{1}{2}~;~\frac{1}{2}~;~0\right)$ et $\left(\frac{1}{3}~;~\frac{1}{3}~;~\frac{1}{3}\right)$.
  2. Soit $s$ et $t$ deux réels quelconques. On note $M(s~;~1 - s~;~0)$ un point de la droite (DB) et $N(t~;~t~;~t)$ un point de la droite (AG).
    1. Montrer que $MN^2 = 3 \left(t - \frac{1}{3}\right)^2 + 2\left(s - \frac{1}{2}\right)^2 + \frac{1}{6}$.
    2. En déduire la position des points $M$ et $N$ pour laquelle la distance $MN$ est minimale. Que peut-on dire de la droite $(MN)$ dans ce cas ?

 


Correction de l'exercice 4 5 points


Candidats N'AYANT PAS SUIVI l'enseignement de spécialité mathématiques


Soit ABCDEFGH le cube ci-dessous. 

On se place dans le repère orthonormé $\left(A~;~\vec{\text{AB}},\: \vec{\text{AD}},\: \vec{\text{AE}}\right)$.

    1. Montrer que la droite (DB) admet pour représentation paramétrique \[\left\{\begin{array}{l c l} x &=& \phantom{1 -}s\\ y &=& 1 - s ,\\ z &=& \phantom{1 -}0 \end{array}\right.,\: \text{où s décrit l'ensemble } \mathbb R\: \text{des nombres réels}.\]
    2. On a $B(1;0;0)$ et $D(0;1;0)$.
      En prenant $s=1$ dans la représentation paramétrique fournie, on retrouve les coordonnées de $B$.
      En prenant $s=0$ dans la représentation paramétrique fournie, on retrouve les coordonnées de $D$.
      Il s’agit donc bien d’une représentation paramétrique de la droite $(DB)$.
      $\quad$
    3. Montrer que les points de la droite (AG) sont les points de coordonnées $(t~;~t~;~t)$ où $t$ est un réel.
    4. On a $A(0;0;0)$ et $G(1;1;1)$.
      Ainsi $\overrightarrow{AG}(1;1;1)$
      Une représentation paramétrique de $(AG)$ est par conséquent $\begin{cases}x=t\\y=t \quad t\in \mathbb R\\z=t\end{cases}$.
      Les points de la droite $(AG)$ sont donc bien les points de coordonnées $(t;t;t)$ où $t$ est un réel.
      $\quad$
  1. Soit $M$ un point quelconque de la droite (DB) et $N$ un point quelconque de la droite (AG). Démontrer que la droite $(MN)$ est perpendiculaire aux deux droites (AG) et (DB) si et seulement si $M$ et $N$ ont pour coordonnées respectives $\left(\frac{1}{2}~;~\frac{1}{2}~;~0\right)$ et $\left(\frac{1}{3}~;~\frac{1}{3}~;~\frac{1}{3}\right)$.
  2. On a $M(s;1-s;0)$ et $N(t;t;t)$. Ainsi $\overrightarrow{MN}(t-s;t+s-1;t)$.
    $\overrightarrow{AG}.\overrightarrow{MN} = t-s+t+s-1+t = 3t-1$ et $\overrightarrow{DB}.\overrightarrow{MN} = t-s-(t+s-1) = -2s+1$
    $\quad$
    $(MN)$ est perpendiculaire à $(AG)$ et $(DB)$
    si, et seulement si, $\overrightarrow{AG}.\overrightarrow{MN} =0$ et $\overrightarrow{DB}.\overrightarrow{MN} = 0$
    si, et seulement si, $3t-1=0$ et $-2s+1=0$
    si, et seulement si, $t=\dfrac{1}{3}$ et $s=\dfrac{1}{2}$
    si, et seulement si, $M\left(\dfrac{1}{2};\dfrac{1}{2};0\right)$ et $N\left(\dfrac{1}{3};\dfrac{1}{3};\dfrac{1}{3}\right)$
    $\quad$
  3. Soit $s$ et $t$ deux réels quelconques. On note $M(s~;~1 - s~;~0)$ un point de la droite (DB) et $N(t~;~t~;~t)$ un point de la droite (AG).
    1. Montrer que $MN^2 = 3 \left(t - \frac{1}{3}\right)^2 + 2\left(s - \frac{1}{2}\right)^2 + \frac{1}{6}$.

    2. $\begin{align*} MN^2&=(t-s)^2+(t+s-1)^2+t^2\\\\
      &=t^2-2st+s^2+t^2+2ts-2t+s^2-2s+1+t^2 \\\\
      &=3t^2-2t+2s^2-2s+1 \\\\
      &=3\left(t^2-\dfrac{2}{3}t\right) + 2(s^2-s)+1 \\\\
      &=3\left(t-\dfrac{1}{3}\right)^2-\dfrac{1}{3}+ 2\left(s-\dfrac{1}{2}\right)^2-\dfrac{1}{2}+1 \\\\
      &=3\left(t-\dfrac{1}{3}\right)^2+ 2\left(s-\dfrac{1}{2}\right)^2+\dfrac{1}{6}
      \end{align*}$
      $\quad$
    3. En déduire la position des points $M$ et $N$ pour laquelle la distance $MN$ est minimale. Que peut-on dire de la droite $(MN)$ dans ce cas ?
    4. On a donc $MN^2 \ge \dfrac{1}{6}$ et $MN^2 = \dfrac{1}{6}$ si, et seulement si, $t=\dfrac{1}{3}$ et $s=\dfrac{1}{2}$.
      La droite $(MN)$ est alors perpendiculaire aux droites $(AG)$ et $(DB)$.
      $\quad$

 


Spécialité 5 points


Candidats AYANT SUIVI l'enseignement de spécialité mathématiques

Partie A


On considère l'équation \[51x - 26y = 1\] où $x$ et $y$ sont des nombres entiers relatifs.

  1. Justifier, en énonçant un théorème du cours, que cette équation admet au moins un couple solution.
    1. Donner un couple solution $\left(x_0~;~y_0\right)$ de cette équation.
    2. Déterminer l'ensemble des couples solutions de cette équation.

 

Partie B


On fait correspondre à chaque lettre de l'alphabet un nombre entier comme l'indique le tableau ci-dessous : $$\begin{array}{{|c|c|c|c|c|c|c|c|c|c|c|c|c|}}\hline A &B&C &D&E &F&G &H&I&J& K &L &M \\ \hline 0 &1 &2 &3 &4 &5 &6 &7 &8 &9 &10 &11 &12\\ \hline \hline N &O &P &Q &R &S & T &U &V &W &X &Y &Z\\ \hline 13 &14 &15 &16 &17 &18 &19 &20 &21 &22 &23 &24 &25\\ \hline \end{array} $$ Afin de coder une lettre de l'alphabet, correspondant à un entier $x$ compris entre $0$ et $25$, on définit une fonction de codage $f$ par $f(x) = y$, où $y$ est le reste de la division euclidienne de $51x + 2$ par $26$. La lettre de l'alphabet correspondant à l'entier $x$ est ainsi codée par la lettre correspondant à l'entier $y$.

  1. Coder la lettre N.
  2. En utilisant la partie A, déterminer l'entier $a$ tel que $0 \leqslant a \leqslant 25$ et $51a \equiv 1\:\:[26]$.
  3. Démontrer que si la lettre correspondant à un entier $x$ est codée par une lettre correspondant à un entier $y$, alors $x$ est le reste de la division euclidienne de $ay + 2$ par $26$.
  4. Déterminer alors la lettre qui est codée par la lettre N.
  5. On applique $100$ fois de suite la fonction de codage $f$ à un nombre $x$ correspondant à une certaine lettre. Quelle lettre obtient-on ?

 


Correction de l'exercice de Spécialité 5 points


Candidats AYANT SUIVI l'enseignement de spécialité mathématiques

Partie A


On considère l'équation \[51x - 26y = 1\] où $x$ et $y$ sont des nombres entiers relatifs.

  1. Justifier, en énonçant un théorème du cours, que cette équation admet au moins un couple solution.
  2. Les nombres $51$ et $26$ sont premiers entre eux.
    D’après le théorème de Bezout, l’équation $51x-26y=1$ admet donc au moins une solution.
    $\quad$
    1. Donner un couple solution $\left(x_0~;~y_0\right)$ de cette équation.
    2. $51 \times (-1)-26\times (-2) = -51+52=1$
      Le couple $(-1;-1)$ est donc solution de cette équation.
      $\quad$
    3. Déterminer l'ensemble des couples solutions de cette équation.
    4. Soit $(x;y)$ une autre solution de cette équation.
      $51x-26y=1$ et $51 \times (-1)-26\times (-2) =1$
      Par différence, on obtient :
      $51(x+1)-26(y+2)=0$ soit $51(x+1)=26(y+2)$
      Les nombres $51$ et $26$ sont premiers entre eux.
      D’après le théorème de Gauss, il existe donc un entier relatif $k$ tel que $x+1=26k$ et $y+2=51k$
      Soit $x=26k-1$ et $y=51k-2$.
      $\quad$
      Réciproquement :
      Soit $k$ un entier relatif.
      $51(26k-1)-26(51k-2)=1326k-51-1326k+52=1$
      L’ensemble des couples solutions de l’équation est donc l’ensemble des couples $(26k-1;51k-2)$ pour tout entier relatif $k$.
      $\quad$

 

Partie B


On fait correspondre à chaque lettre de l'alphabet un nombre entier comme l'indique le tableau ci-dessous : $$\begin{array}{{|c|c|c|c|c|c|c|c|c|c|c|c|c|}}\hline A &B&C &D&E &F&G &H&I&J& K &L &M \\ \hline 0 &1 &2 &3 &4 &5 &6 &7 &8 &9 &10 &11 &12\\ \hline \hline N &O &P &Q &R &S & T &U &V &W &X &Y &Z\\ \hline 13 &14 &15 &16 &17 &18 &19 &20 &21 &22 &23 &24 &25\\ \hline \end{array} $$ Afin de coder une lettre de l'alphabet, correspondant à un entier $x$ compris entre $0$ et $25$, on définit une fonction de codage $f$ par $f(x) = y$, où $y$ est le reste de la division euclidienne de $51x + 2$ par $26$. La lettre de l'alphabet correspondant à l'entier $x$ est ainsi codée par la lettre correspondant à l'entier $y$.

  1. Coder la lettre N.
  2. $N$ est associé à l’entier $13$.
    $51\times 13 + 2=665$ et $665\equiv 15~[26]$
    $N$ est donc codé par la lettre $P$.
    $\quad$
  3. En utilisant la partie A, déterminer l'entier $a$ tel que $0 \leqslant a \leqslant 25$ et $51a \equiv 1\:\:[26]$.
  4. $51a\equiv 1~[26]$ Il existe donc un entier relatif $b$ tel que $51a=1+26b$ soit $51a-26b=1$
    D’après la partie A, il existe donc un entier relatif $k$ tel que $a=26k-1$.
    On veut que $0 \le a \le 26$ $\Leftrightarrow 0 \le 26k-1\le 1$ $\Leftrightarrow 1\le 26k \le 27$ $\Leftrightarrow k=1$
    Par conséquent $a=25$.
    $\quad$
  5. Démontrer que si la lettre correspondant à un entier $x$ est codée par une lettre correspondant à un entier $y$, alors $x$ est le reste de la division euclidienne de $ay + 2$ par $26$.
  6. On a donc :
    $\begin{align*} 51x+2\equiv y~[26] & \rightarrow 51ax+2a \equiv ay~[26] \\\\
    &\rightarrow x+50 \equiv ay~[26] \\\\
    &\rightarrow x+24 \equiv ay~[26] \\\\
    &\rightarrow x \equiv ay-26~[26] \\\\
    &\rightarrow x\equiv ay+2~[26]
    \end{align*}$
    $\quad$
  7. Déterminer alors la lettre qui est codée par la lettre N.
  8. $25 \times 13 + 2=327 \equiv 15~[26]$
    Ainsi la lettre $P$ est codée par la lettre $N$.
    $\quad$
  9. On applique $100$ fois de suite la fonction de codage $f$ à un nombre $x$ correspondant à une certaine lettre. Quelle lettre obtient-on ?
  10. Si $f(x)=y$ alors
    $51y+2 \equiv 25y+2~[26]$ soit $f(y)=x$.
    Ainsi $f\left(f(x)\right)=x$
    Quand on applique deux fois de suite la fonction $f$ on retrouve la lettre de départ.
    Par conséquent si on applique $100$ fois de suite la fonction $f$ on obtiendra la lettre de départ.
    $\quad$